首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 836 毫秒
1.
利用溶液插层法制备了硅橡胶/膨胀石墨(VMQ/EG)导热复合材料.与常规的熔融共混法相比有明显优势:以较低的EG用量可以得到较高的导热性能,但是在溶液插层法中EG用量受到限制;当在溶液插层VMQ/EG体系中继续加入第3组分(如SiC、AlN、BN、Al<,2>O<,3>、ZnO、碳纤维(CF)等)时,可以进一步提高材料...  相似文献   

2.
通过混炼工艺制备了片状Al2O3填充聚全氟乙丙烯(FEP)复合材料,以颗粒状Al2O3为对比样品,研究了片状Al2O3形状和尺寸对 FEP基复合材料热导率的影响,利用SEM观察了FEP基复合材料的微观形貌。结果表明:在低填充量下,Al2O3颗粒在FEP基体中呈“海岛”状分布,没有形成连续的导热网链,但其热导率明显提高;复合材料拉伸强度与断裂伸长率随Al2O3含量的增加而减小;低填充量时复合材料热导率的提高主要来自Al2O3的微细片状结构,这种微细片状结构一方面提高了有效导热路径,另一方面增加了颗粒与基体之间接触面积,因此有利于热导率的提高。  相似文献   

3.
采用熔融共混法制备了光缆护套料用高密度聚乙烯(HDPE)/线型低密度聚乙烯(LLDPE)与HDPE/茂金属线型低密度聚乙烯(m-LLDPE)2种共混物,讨论了共混物HDPE/LLDPE和HDPE/m-LLDPE及中密度聚乙烯(MDPE)与铝塑带之间的热合强度,并研究了共混物的力学性能、松弛行为及组分间的相容性。研究结果表明,HDPE/LLDPE(7∶3)共混物与铝塑带热合强度最高(27.2 N/cm);熔融状态下,低频区HDPE/LLDPE的lgG′-lgω与线性偏离,且松弛指数(λ)随HDPE含量增加先减小后增大,表明分子链缠结先增强再减弱,为非均相体系;HDPE/LLDPE只表现出1个熔融峰,表明共混物组分具有良好相容性;因分子界面多重叠,HDPE/LLDPE(7∶3)具有更小分散相尺寸(2.74 nm)与更高界面层厚度(1.02 nm),组分相容性最好,且与热熔胶乙烯-醋酸乙烯共聚物(EVA)的界面张力最小。可见,采用来源广、价格相对低廉的HDPE与LLDPE共混可实现替代MDPE制备光缆护套料。  相似文献   

4.
Fe2O3掺杂对ZnO-B2O3-P2O5-RnOm玻璃热学性能的影响   总被引:1,自引:0,他引:1  
李胜春  陈培  李耀刚 《化工新型材料》2011,39(7):114-116,133
在ZnO-B<,2>O<,3>-P<,2>O<,5>-R<,n>O<,m>玻璃中掺杂0~5%(摩尔含量)的Fe<,2>O<,3>,分析了Fe<,2>O<,3>对热膨胀系数(α)、密度(ρ)、电阻率(RV)的影响,通过差热分析(DTA)、红外光谱和X射线衍射(XRD)分析了玻璃的结构.研究表明:Fe<,2>O<,3>的摩...  相似文献   

5.
包镇红  江伟辉  苗立锋  罗薇 《材料导报》2018,32(24):4253-4257
采用高温熔融法制备了具有不同MgO/Al2O3比的堇青石微晶玻璃。采用差热分析仪(DTA)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)等测试技术研究了MgO/Al2O3比对该系统玻璃分相和析晶的影响。结果表明:当SiO2含量不变时,随着MgO/Al2O3比的减小,分相形貌由连通的蠕虫状逐渐变为孤立的球形结构,且分相粒子尺寸逐渐减小,从200~300 nm减小至30~50 nm。当MgO/Al2O3比从3降到1,析晶峰温度由997 ℃升至1 105 ℃,析晶的难度逐渐提高。当MgO/Al2O3比为3时,MgO-Al2O3-SiO2系统玻璃经950 ℃热处理后即产生大量分相,经1 050 ℃热处理后在分相液滴中析出大量堇青石晶体,且堇青石优先在富Mg相中析出。提高MgO/Al2O3比有利于MgO-Al2O3-SiO2系统玻璃在分相中析晶,反之,则会降低系统的分相和析晶能力。  相似文献   

6.
利用4-氨基甲基吡啶与马来酸酐接枝线型低密度聚乙烯(LLDPE-g-MAH)成功制备了氨基甲基吡啶接枝线型低密度聚乙烯(LLDPE-g-Py),然后采用熔融共混法制备了改性的BN/LLDPE(mBN/LLDPE)复合材料。深入研究了mBN/LLDPE复合材料的热性能和力学性能等。结果表明,LLDPE-g-Py的加入,使mBN/LLDPE复合材料的导热性能得到很大提升,但LLDPE-g-Py过多会导致其耐热性降低。为了改善复合材料的耐热性,将LLDPE-g-Py质量分数固定为10%。当BN质量分数为40%时,mBN/LLDPE复合材料的导热系数达到了0.95 W/(m·K),为纯LLDPE导热系数(0.32 W/(m·K))的3倍。同时,mBN/LLDPE复合材料的拉伸强度在小幅度下降的情况下,其断裂伸长率得到明显的改善。  相似文献   

7.
成型温度对多孔SiC陶瓷性能的影响   总被引:1,自引:0,他引:1  
以包混工艺合成了核-壳结构的先驱体粉体,并引入少量Al<,2>O<,3>,SiO<,2>和Y<,2>O<,3>作为复合添加剂,通过模压成型、炭化和烧结工艺制备了多孔碳化硅陶瓷;研究了成型温度对样品的孔隙率、密度、热膨胀系数、抗弯强度和热震性能的影响.结果表明:成型温度对多孔碳化硅陶瓷的孔隙率、密度、抗弯强度及热震性能均...  相似文献   

8.
利用熔融铝合金的直接氧化反应制备了具有含油自润滑特性的Al2O3/Al 复合材料。通过对磨面的SEM 观察及能谱分析, 测定了金属相和显微孔隙对复合材料磨损性能的影响, 初步探讨了Al2O3/Al 复合材料的磨损机制。  相似文献   

9.
通过表面接枝技术将流滴剂十八烷基二乙醇胺丙烯酸单酯(AAM)接枝到高岭土(Ka)表面,制得Ka与AAM接枝物(Ka-g-AAM);将Ka-g-AAM与线性低密度聚乙烯(LLDPE)熔融挤出,制备了Ka-g-AAM/LLDPE复合材料;利用FTIR、SEM、DSC和加速流滴仪等对Ka-g-AAM/LLDPE复合材料的结构和性能进行了表征。结果表明,与AAM/LLDPE和Ka-AAM/LLDPE复合材料相比,Ka-g-AAM/LLDPE复合材料中LLDPE的熔融温度、结晶温度和力学性能变化不大;Ka-g-AAM/LLDPE复合材料薄膜在60℃加速流滴期达23天,比AAM/LLDPE复合材料延长了4天。   相似文献   

10.
SiO2玻璃原位反应合成Al/Al2O3复合材料   总被引:3,自引:0,他引:3       下载免费PDF全文
利用SiO2玻璃具有易近成型、致密及各向同性的特点,通过SiO2玻璃与铝熔体间的反应合成了Al/Al2O3复合材料,克服长期以来在合成Al/Al2O3复合材料时均采用颗粒反应物的局限。反应产物是一种组织均匀致密的Al 与Al2O3互为网络的Al/Al2O3陶瓷基复合材料。反应温度升高,整个反应产物中的Al的体积分数上升。Al/Al2O3复合组织在三维空间的真实形态中存在着Al相被Al2O3完全包围的形态,证明了网络状Al2O3组织形成的烧结机理。与合成Al/Al2O3的其它工艺相比,本工艺可在1000℃的较低温度进行,并具有反应速度快、断裂韧性和抗弯强度值高的特点。  相似文献   

11.
采用固相剪切碾磨预处理结合熔融再加工技术制备了高性能铝粉(Al)/线性低密度聚乙烯(LLDPE)导热复合材料,并与常规熔融共混法对比,系统研究了固相剪切碾磨对复合材料微观形态、结晶性能、热稳定性、流变特性、热导率和力学性能等的影响。结果表明:通过固相剪切碾磨实现了球形Al颗粒应力诱导变形为具有较大径厚比的片状,在基体中均匀分散且与其界面结合得以增强,同时这种大片状的铝粉在Al/LLDPE复合材料成型时更易有效接触形成导热网链并形成一定取向分布,特别是在高填充量下。因此Al/LLDPE复合材料拥有更好的结晶性能和热稳定性、更低的流变逾渗阈值、更高的热导率和力学性能。固相剪切碾磨预处理制备的Al/LLDPE复合材料在铝粉含量超过15%就出现流变逾渗现象,且当Al填充质量分数80%时,复合材料的热导率高达8.86 W/(m·K),拉伸强度和弯曲强度分别为33.0 MPa和31.2 MPa,都明显优于常规熔融共混复合体系,同时其初始分解温度也提高了近13℃。  相似文献   

12.
采用固相剪切碾磨法(S3M)制备铝粉和线性低密度聚乙烯(LLDPE)的复合粉体,再经熔融加工获得高性能LLDPE/Al导热复合材料。借助扫描电镜(SEM)、激光粒度分析仪等表征铝粉在基体中的微观形态和分散状态,同时研究LLDPE/Al复合材料的热导率、力学性能和热稳定性。结果表明:固相剪切碾磨过程中铝粉受磨盘挤压、拉伸、摩擦剪切等复合力场作用,由较小球形颗粒变为较大片状,同时在基体中均匀分散且界面结合得以增强,因此复合材料拥有更高的热导率、更好的力学性能和热稳定性。当铝粉填充质量分数为80%时,经固相剪切碾磨10次制备的复合材料热导率高达8.782W·m~(-1)·K~(-1),拉伸强度和弯曲强度分别为33.00MPa和31.16MPa,初始分解温度比基体提高约13℃。  相似文献   

13.
研究了金刚石膜/氧化铝陶瓷复合材料作为超高速、大功率集成电路封装基板材料的可行性。采用电容法测量了复合材料的介电性质,结果表明在氧化铝上沉积金刚石膜,能有效降低基片材料的介电系数。碳离子预注入处理使介电损耗降低(从5×10-3降低到2×10-3),且频率稳定性更好。金刚石膜的沉积可明显提高基片的热导率,随着薄膜厚度的增加,复合材料的热导率单调递增。当薄膜厚度超过100μm时复合材料的介电系数下降到6.5、热导率上升至3.98W/cm·K,热导率接近氧化铝的20倍。  相似文献   

14.
高分子材料的绝热特性极大地限制了其作为导热材料在工业中的应用。选用多层石墨烯作为导热填料,并分别与导热填料氧化铝(Al_2O_3)和碳化硅(SiC)复配,探究导热填料的复配对尼龙6(PA6)复合材料导热性能的影响。加入质量分数为3%石墨烯时,PA6复合材料的热导率为0.548W·m-1·K-1,相比PA6基体提高161%。通过调节石墨烯与Al_2O_3和SiC复配的比例以及复合填料量,PA6复合材料的热导率可控在0.653~4.307W·m-1·K-1之间,最高是PA6基体的20倍。为拓展石墨烯在导热材料方面的应用及PA6导热材料在工业上应用提供了有价值的实验依据。  相似文献   

15.
顾晓华  李付 《材料导报》2017,31(Z2):388-391
以线性低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)、有机改性的蒙脱土(MMT)为主要原料,选用乙烯-醋酸乙烯酯接枝马来酸酐(EVA-g-MAH)作为增容剂,采用熔融插层法制备了线性低密度聚乙烯/高密度聚乙烯/蒙脱土(LLDPE/HDPE/MMT)纳米复合材料。通过X射线衍射(XRD)分析蒙脱土在聚乙烯基体中的分散情况,并研究蒙脱土的含量对其在基体中分散效果的影响。TG实验结果表明,蒙脱土的加入使LLDPE/HDPE/MMT纳米复合材料的热稳定性得到很大的提高。由DSC曲线可以得出,加入蒙脱土的复合材料相比于纯聚合物,其熔点和热分解温度都有很大的提高,提高程度与蒙脱土的含量有关。  相似文献   

16.
研究了石墨粒径及表面镀Si处理对石墨/Al复合材料热物理性能的影响。结果表明:在盐浴过程中石墨表面形成了SiC层,这不仅增强了石墨-Si/Al复合材料的界面结合力,而且抑制了Al4C3相的产生。随着石墨鳞片体积分数从50%增加到70%,复合材料X-Y方向的热导率从492 W/(m·K)增加到654 W/(m·K),而且体积分数为50%的镀Si石墨/Al复合材料抗弯强度达到了81 MPa,相比未镀覆的提高了53%,是理想的定向导热电子封装材料。随着石墨粒径从500μm减小到150μm,石墨-Si/Al复合材料X-Y面方向的热导率由654 W/(m·K)降低到445 W/(m·K),但Z方向的热导率和复合材料抗弯强度变化不明显。  相似文献   

17.
以天然鳞片石墨为原料,PVB为黏结剂,PEG和DBP混合物为增塑剂,通过流延工艺在室温下制备了定向排列的石墨/聚合物片层复合材料。系统分析了不同黏结剂用量和流延刀口高度下复合片层材料的定向排列状况,并探讨了定向排列程度对其热导率的影响。XRD和SEM的结果表明,石墨/聚合物复合片层材料显示了不同程度的定向排列。热导率测试结果表明,片层复合材料的热导率随着定向排列程度的提高而增大。通过优化黏结剂的用量和流延刀口高度制备了具有较高热导率的片层复合材料,其热导率最高可达490 W/(m.K)。  相似文献   

18.
先用Hummer法合成氧化石墨烯(GO),然后用熔融共混法制备了不同GO含量的聚对苯二甲酸丁二醇酯(PBT)纳米复合材料(PBT/GO)。随着GO含量的提高PBT/GO纳米复合材料的拉伸强度和冲击强度都先提高后降低,GO的含量为0.5%的材料性能最佳。将GO含量为0.5%的PBT/GO纳米复合材料在不同温度(150、180和200℃)热处理不同时间(30、60和90 min),研究了热处理对其结构和性能的影响。结果表明,随着热处理温度的提高PBT/GO纳米复合材料的拉伸强度和冲击强度最高达63.2 MPa和11.6 kJ/m2,比热处理前分别提高了36.1%和59.3%。而随着热处理时间的延长其拉伸强度和冲击强度最高分别为62.3 MPa和11.0 kJ/m2,分别提高了34.2%和51.9%。DSC分析结果表明,提高热处理温度和延长热处理时间都能提高复合材料的结晶度,结晶度比热处理前最多分别提高了11.4%和8.6%,温度对结晶度的影响更甚。XRD测试结果表明,热处理并不改变复合材料的晶型结构,只影响其结晶度。导热性能测试结果表明,复合料的结晶度越高则导热性能越好。提高热处理温度,复合材料在50℃和100℃的热导率最高分别为0.49 W/(m·K)和0.42 W/(m·K),比热处理前分别提高了24.1%和18.6%;延长热处理时间,复合材料在50℃和100℃的热导率最高分别为0.46 W/(m·K)和0.37 W/(m·K),比热处理前分别提高了14.6%和5.9%,热处理温度对导热性能的影响更显著。  相似文献   

19.
以高纯氧化铝为原料,通过起泡结合凝胶注模成型的方法制备了孔隙率为77%~85%、孔径为40~200μm的氧化铝多孔陶瓷.多孔陶瓷组成为α-Al2O3.多孔陶瓷的微结构可通过固含量与发泡剂加入量的改变进行调控.多孔陶瓷的耐压强度为9.40~32.50MPa,且对其断裂方式进行了研究.多孔陶瓷在1000℃下的热导率为0.80 W.(m.K)-1.  相似文献   

20.
陈成  张国玲  于化顺  张琳  闵光辉 《功能材料》2012,43(19):2675-2679
通过对SiC颗粒进行表面改性处理,并向Al基体中添加Si元素合金化采用热压烧结方法制备了Al-10Si-50%(质量分数)SiC复合材料,研究了复合材料的微观组织和导热性能。结果表明,复合材料中SiC颗粒在基体中分布均匀,复合材料组织致密;SiC-Al界面清晰、平直,无过渡层和其它附加物,复合材料界面结合良好;复合材料导热性能优异,其热导率可达189W/(m·K),能够满足电子封装材料的日常使用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号