首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 528 毫秒
1.
采用NbSi复合靶,通过调节Nb与Si的比例,利用磁控溅射射频工艺,在单晶硅片上沉积不同Si含量的NbSiN纳米复合膜。利用X射线衍射仪、纳米压痕仪和高分辨透射电镜等,研究了Si含量对NbSiN纳米复合膜的微观结构和力学性能的影响。结果表明:随着薄膜中Si含量的增加,其结晶程度先升高,然后降低,硬度和弹性模量先增加后降低,当n(Si):n(Nb)=5:20时,NbSiN薄膜硬度和弹性模量均达到最大值33.6和297.2 GPa。微观组织观察表明,此时NbSiN薄膜内部形成Si_3N_4界面相包裹NbN纳米晶粒的纳米复合结构,Si_3N_4界面相呈结晶态协调相临NbN纳米晶粒间的位向差,并与NbN纳米晶粒之间形成共格外延生长,其微结构可用nc-NbN/c-Si_3N_4模型来表示,表明其超硬效应源于NbN基体相和Si_3N_4界面相之间形成的共格外延生长界面。  相似文献   

2.
采用反应磁控溅射工艺在Si基体上沉积了不同调制周期的CrAlN/WS_2纳米多层膜,采用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)、纳米压痕仪和HSR-2M涂层摩擦磨损试验机、扫描电子显微镜(SEM),研究了调制周期对CrAlN/WS_2纳米多层膜微观结构和力学性能的影响。研究结果表明,WS_2层厚度低于0.8nm时,六方结构的WS_2在CrAlN的模板作用下转变为B1-NaCl型面心立方结构并与CrAlN层发生共格外延生长,使薄膜得到强化,在WS_2层厚度为0.8nm时,薄膜硬度和弹性模量达到最大,分别为37.3和341.2GPa。随着WS_2层厚度的进一步增加,WS_2又转变回六方结构,使薄膜共格外延生长结构破坏,结晶度降低,耐磨性增强,硬度和弹性模量减小。CrAlN/WS_2纳米多层膜的摩擦系数均在0.2~0.3之间,远低于单层CrAlN的摩擦系数的0.6,磨损率亦明显减小。获得了综合力学性能优异的CrAlN/WS_2纳米多层膜。  相似文献   

3.
AlN/TiSiN纳米多层膜的微观组织和力学性能研究   总被引:1,自引:0,他引:1  
采用TiSi复合靶和Al靶,用射频磁控溅射工艺沉积不同TiSiN层厚度的AlN/TiSiN纳米多层膜。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)和纳米压痕仪研究了不同TiSiN层厚度对AlN/TiSiN纳米多层膜的微观组织和力学性能的影响。结果表明,随着TiSiN层厚度的增加,AlN相的结晶程度先增加后降低,涂层的硬度先提高后降低,当TiSiN层厚度为0.5nm时具有最高的硬度和弹性模量。HRTEM观测可知,在TiSiN层厚度为0.5nm时,TiSiN层在AlN层的模板作用下呈密排六方结构,并与AlN层呈共格外延生长,薄膜的强化主要与共格外延生长结构有关。  相似文献   

4.
通过反应磁控溅射制备了一系列不同Si3N4层厚的HfC/Si3N4纳米多层膜,采用X射线光电子能谱、X射线衍射、扫描电子显微镜和微力学探针表征了多层膜的微结构、硬度与弹性模量,研究了Si3N4层厚度变化对纳米多层膜微结构与力学性能的影响。结果表明,溅射的Si3N4粒子不与C2H2气体反应,因NaCl结构HfC晶体调制层的模板效应,溅射态为非晶的Si3N4层在厚度小于约1 nm时被强制晶化,并与HfC晶体层形成共格外延生长结构,多层膜呈现强烈的(111)择优取向柱状晶,其硬度和弹性模量显著上升,最高值分别达到38.2 GPa和343 GPa。进一步增加Si3N4层的厚度后,Si3N4层转变为以非晶态生长,多层膜的共格外延生长结构受到破坏,其硬度和模量也相应降低。  相似文献   

5.
TiN/Si3N4纳米多层膜的生长结构与超硬效应   总被引:3,自引:1,他引:3  
采用磁控溅射方法制备了一系列不同Si3N4和TiN层厚的TiN/Si3N4纳米多层膜,采用X射线衍射、高分辨电子显微分析和微力学探针表征了薄膜的微结构和力学性能,研究了Si3N4和TiN层厚对多层膜生长结构和力学性能的影响.结果表明:当Si3N4层厚小于0.7 nm时,原为非晶的Si3N4在TiN的模板作用下晶化并与之形成共格外延生长的柱状晶,使TiN/Si3N4多层膜产生硬度和弹性模量异常升高的超硬效应.最高硬度和弹性模量分别为34.0 GPa和353.5 GPa.当其厚度大于1.3 nm时,Si3N4呈现非晶态,阻断了TiN的外延生长,多层膜的力学性能明显降低.此外,TiN层厚的增加也会对TiN/Si3N4多层膜的生长结构和力学性能造成影响,随着TiN层厚的增加,多层膜的硬度和弹性模量缓慢下降.  相似文献   

6.
采用多靶磁控溅射法制备了一系列具有不同SiO2调制层厚的TiN/SiO2纳米多层膜.利用X射线衍射、X射线能量色散谱、扫描电子显微镜、高分辨电子显微镜和微力学探针表征和研究了多层膜的生长结构和力学性能.结果表明,具有适当厚度(0.45~0.9 nm)的SiO2调制层,在溅射条件下通常为非晶态,在TiN层的模板作用下晶化并与TiN层共格外延生长,形成具有强烈(111)织构的超晶格柱状晶多层膜;与此相应,纳米多层膜产生了硬度和弹性模量异常增高的超硬效应(最高硬度达45 GPa).随着SiO2层厚度的继续增加,SiO2层转变为非晶态,阻断了多层膜的共格外延生长,使纳米多层膜形成非晶SiO2层和纳米晶TiN层的多层结构,多层膜的硬度和弹性模量逐渐下降.  相似文献   

7.
采用射频磁控溅射工艺在Si基底上制备TiSiCN纳米复合膜,固定靶材中的Ti含量,通过改变Si和C的含量比沉积得到一系列薄膜,采用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)和纳米压痕仪研究了不同Si/C含量比对TiSiCN纳米复合膜的微观结构和力学性能的影响。结果表明,Si/C含量比对TiSiCN纳米复合膜的微观结构和硬度具有显著影响,当Si/C含量比为Si2C2时制得薄膜的微观结构为晶化的界面相(SiNx+C)与其包裹的TiN纳米晶粒共格外延生长,薄膜硬度达到最高值46GPa。  相似文献   

8.
TaN/NbN纳米多层膜的力学性能与耐磨性   总被引:1,自引:0,他引:1  
采用反应溅射在多靶溅射仪上制备了调制周期小于73.2nm的一系列TaN/NbN纳米多层膜和TaN,NbN单层薄膜,并采用透射电子显微镜、显微硬度计和凹坑研磨仪研究了薄膜的微结构、力学性能和耐磨性。结果表明,具有成分周期变化的TaN/NbN纳米多层膜在其调制周期为2.3-17.0nm范围内产生硬度异常升高的超硬效应,最高硬度达到HK51.0GPa;磨损实验表明,TaN/NbN纳米多层膜耐磨性远高于TaN和NbN单层膜,其主要原因是调制结构中大量界面的存在,提高了薄膜的韧性。  相似文献   

9.
采用多靶磁控溅射系统,使用AlCrTiZrNb合金靶和Si靶制备了不同Si_3N_4厚度的(AlCrTiZrNb)N/Si_3N_4纳米多层膜,样品基底为单晶硅。通过X射线衍射仪(XRD)、高透射电子显微镜(HRTEM)、扫描电子显微镜(SEM)和纳米压痕仪对样品进行微观组织的表征和力学性能的测量。实验结果表明,随着Si_3N_4层厚度的增加,样品的结晶度和力学性能均先增加后减小,XRD图谱中出现面心立方相结构。在Si_3N_4层厚度为0.5 nm时,(111)衍射峰强度达到最大值。说明薄膜结晶度最强,薄膜的硬度和弹性模量也达到最高值,分别为30.6,298 GPa。通过对样品的横截面的形貌观察,发现当Si_3N_4层厚度为0.5 nm时,多层膜的多层结构生长良好。在(AlCrTiZrNb)N层的模板作用下,Si_3N_4层从非晶态转变为面心立方结构,与(AlCrTiZrNb)N层之间形成共格外延生长结构,(AlCrTiZrNb)N/Si_3N_4纳米多层膜的强化可归因于两调制层之间形成的共格界面。  相似文献   

10.
TaN/NbN纳米多层膜的力学性能与耐磨性   总被引:1,自引:0,他引:1  
采用反应溅射在多靶溅射仪上制备了调制周期小于 73 .2nm的一系列TaN/NbN纳米多层膜和TaN ,NbN单层薄膜 ,并采用透射电子显微镜、显微硬度计和凹坑研磨仪研究了薄膜的微结构、力学性能和耐磨性。结果表明 ,具有成分周期变化的TaN/NbN纳米多层膜在其调制周期为 2 3~ 17 0nm范围内产生硬度异常升高的超硬效应 ,最高硬度达到HK 5 1 0GPa ;磨损实验表明 ,TaN/NbN纳米多层膜耐磨性远高于TaN和NbN单层膜 ,其主要原因是调制结构中大量界面的存在 ,提高了薄膜的韧性。  相似文献   

11.
采用TiSi复合靶与V靶, 用射频磁控溅射工艺在TiSiN纳米复合膜中插入不同厚度的VN纳米层, 采用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)和纳米压痕仪研究了VN插入层厚度对TiSiN纳米复合膜的微观结构和力学性能的影响。结果表明: 当TiSiN纳米复合膜中插入VN纳米层厚度较小时, 薄膜由纳米复合结构转变成纳米多层结构, 薄膜硬度降低。继续增加VN层厚度, 薄膜硬度随之升高, 在VN沉积层厚为0.5 nm时薄膜出现连续贯穿多层纳米层、结晶度良好的柱状晶, TiSiN层与VN层呈共格外延生长的结构, 薄膜硬度达到37.2 GPa。随着VN层厚的继续增加, 薄膜的共格外延生长结构消失, 硬度下降。  相似文献   

12.
为了研究纳米多层薄膜的超硬效应 ,采用反应溅射法制备从 1 4nm至 2 7nm不同调制周期的一系列TiN/NbN纳米多层膜。高分辨电子显微镜对薄膜的调制结构和界面生长方式的观察发现 ,TiN/NbN膜具有很好的调制结构 ,并呈现以面心立方晶体结构穿过调制界面外延生长的多晶超晶格结构特征。显微硬度测量表明 ,TiN/NbN纳米多层膜存在随调制周期变化的超硬效应。薄膜在调制周期为 8 3nm时达到HK39 0GPa的最高硬度。分析认为 ,两种不同晶格常数的晶体外延生长形成的交变应力场 ,对材料有强化作用 ,这是TiN/NbN纳米多层膜产生超硬效应的主要原因  相似文献   

13.
为了研究纳米多层薄膜的超硬效应,采用反应溅射法制备从1.4nm至27nm不同调制周期的一系列TiN/NbN纳米多层膜。高分辨电子显微镜参薄膜的调制结构和界面生长方式的观察发现,TiN/NbN膜具有很好的调制结构,并呈现以面心立方晶体结构穿过调制界面外延生长的多晶超晶格结构特征。显微硬度测量表明,TiN/NbN纳米多层膜存在随调制周期变化的超硬效应。薄膜在调制周期为8.3nm时达到HK39.0 Gpa的最高硬度。分析认为,两种不同晶格常数的晶体外延生长形成的交变应力场,对材料有强化作用,这是TiN/NbN纳米多层膜产生超硬效应的主要原因。  相似文献   

14.
采用自制的复合靶材,通过直流磁控溅射技术,在单晶Si基片上沉积一系列不同Si含量的(AlCrTiZrHf)-Si_x-N高熵薄膜,并依次采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、高透射电子显微镜(HRTEM)和纳米压痕仪对薄膜进行表征和测试,研究Si含量对其微观结构和力学性能的影响。实验结果显示,(AlCrTiZrHf)N薄膜成柱状晶生长,并具有(111)晶面的择优取向。Si元素的掺入,使得原薄膜的(111)峰消失,(AlCrTiZrHf)-Si_x-N薄膜晶粒得到细化,同时生成网状非晶相,从而形成非晶包裹纳米晶的纳米复合结构。随着Si含量的增加,薄膜力学性能先上升后下降,这种趋势归因于所形成的纳米复合结构,并且当Si含量为8%(体积比)时,薄膜的硬度和弹性模量最高,分别为26.6和250.9 GPa。  相似文献   

15.
采用反应磁控溅射制备了具有不同调制周期的AIN/(Ti,Al)N纳米多层膜,研究了亚稳相立方氮化铝(c-AIN)在纳米多层膜中的生长条件及其对薄膜力学性能的影响。结果表明:在小调制周期下AIN以立方结构存在,并与(Ti,Al)N层形成同结构共格外延生长,使纳米多层膜产生较大的晶格畸变。与此相应,AIN/(Ti,Al)N纳米多层膜硬度和弹性模量随调制周期的减小呈单凋上升的趋势,当调制周期小于8~10 nm时其增速明显增大,并在调制周期为1.3 nm时达到最高硬度29.0GPa和最高弹性模量383 GPa.AIN/(Ti,Al)N纳米多层膜的硬度和弹性模量在小调制周期时的升高与亚稳相c-AIN的产生并和(Ti,Al)N形成共格结构有关。  相似文献   

16.
c-AlN的生长对AlN/(Ti,Al)N纳米多层膜力学性能的影响   总被引:4,自引:0,他引:4  
采用反应磁控溅射制备了具有不同调制周期的AlN/(Ti,Al)N纳米多层膜,研究了亚稳相立方氮化铝(c—AlN)在纳米多层膜中的生长条件及其对薄膜力学性能的影响.结果表明:在小调制周期下AlN以立方结构存在,并与(Ti,Al)N层形成同结构共格外延生长,使纳米多层膜产生较大的品格暗变.与此相应,AlN/(Ti,Al)N纳米多层膜硬度和弹性模量随调制周期的减小呈单调上升的趋势,当调制周期小于8~10nm时其增速明显增大,并在调制周期为1.3nm时达到最高硬度29.0GPa和最高弹性模量383GPa,AlN/(Ti,Al)N纳米多层膜的硬度和弹性模量在小调制周期时的升高与亚稳相c—AlN的产生并和(Ti,Al)N形成共格结构有关。  相似文献   

17.
采用反应磁控溅射的方法,利用Zr靶与TiSi复合靶成功制备了不同TiSiN层厚度的ZrN/TiSiN纳米多层膜。利用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、扫描电子显微镜(SEM)和纳米压痕仪研究了不同TiSiN层厚度对ZrN/TiSiN纳米多层膜的微观结构和力学性能的影响。结果表明,ZrN/TiSiN纳米多层膜主要由面心立方的ZrN相组成,随着TiSiN层厚度的增加,纳米多层膜的结晶程度先增加后降低,其硬度和弹性模量也先升高后降低。当TiSiN层厚度为0.7nm时,纳米多层膜具有最高的硬度和弹性模量,分别为28.7和301.1GPa,远超过ZrN单层膜。ZrN/TiSiN纳米多层膜的强化效果可由交变应力场和模量差理论进行解释。  相似文献   

18.
NbN/TaN纳米多层膜的微结构及超高硬度效应   总被引:3,自引:0,他引:3  
用磁控反应溅射的方法在不锈钢基片上制备了NbN/TaN纳米多层薄膜,试验采用X射线衍射仪(XRD)、透射电子显微镜(TEM)及显微硬度仪对薄膜的微结构和硬度进行分析,结果表明:在NbN/TaN多层膜中,NbN层为面心晶体结构,TaN层为六方晶体结构;NbN/TaN纳米多层膜存在超硬效应,在调制周期2.3~170nm这一放宽的范围内保持超高硬度,硬度最大值HK达51.0GPa  相似文献   

19.
利用磁控溅射法在不同基底偏压条件下制备了CrN/Si3N4纳米多层膜,分别用X射线衍射仪、原子力显微镜及纳米压痕仪表征多层膜的微观结构及力学性能,结果表明,衬底偏压对CrN/Si3N4纳米多层膜微观结构、界面结构、硬度和磨损性能有重要影响。漂浮电位时多层膜界面粗糙,CrN呈(200)、(111)共同生长,硬度和弹性模量低,有偏压且变化时界面宽度和粗糙度变化不大,硬度和模量变化的主要原因是不同衬底偏压下的晶格畸变导致两层材料弹性模量变化和晶粒尺寸变化。基底偏压的优化有助于改善涂层的屈服应力和断裂韧性。  相似文献   

20.
采用高分辨透射电子显微镜对高硬度的TiN/Si3N4纳米晶复合膜的观察发现,这类薄膜的微结构与Veprek提出的nc-TiN/a-Si3N4模型有很大不同:复合膜中的TiN晶粒为平均直径约10nm的柱状晶,存在于柱晶之间的Si3N4界面相厚度为0.5~0.7nm,呈现晶体态,并与TiN形成共格界面.进一步采用二维结构的TiN/Si3N4纳米多层膜的模拟研究表明,Si3N4层在厚度约<0.7nm时因TiN层晶体结构的模板作用而晶化,并与TiN层形成共格外延生长结构,多层膜相应产生硬度升高的超硬效应.由于TiN晶体层模板效应的短程性,Si3N4层随厚度微小增加到1.0nm后即转变为非晶态,其与TiN的共格界面因而遭到破坏,多层膜的硬度也随之迅速降低.基于以上结果,本文对TiN/Si3N4纳米晶复合膜的强化机制提出了一种不同于nc-TiN/a-Si3N4模型的新解释.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号