首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Wu Y  Xu X  Tang Q  Li Y 《Nanotechnology》2012,23(20):205103
We report a new type of dual modal nanoprobe to combine optical and magnetic resonance bioimaging. A simple reverse microemulsion method and coating process was introduced to synthesize silica-coated Gd(2)(CO(3))(3):Tb nanoparticles, and the particles, with an average diameter of 16 nm, can be dispersed in water. As in vitro cell imaging of the nanoprobe shows, the nanoprobe accomplishes delivery to gastric SGC7901 cancer cells successfully in a short time, as well as NCI-H460 lung cancer cells. Furthermore, it presents no evidence of cell toxicity or adverse affect on kidney cell growth under high dose, which makes the nanoprobe's optical bioimaging modality available. The possibility of using the nanoprobe for magnetic resonance imaging is also demonstrated, and the nanoprobe displays a clear T(1)-weighted effect and could potentially serve as a bimodal T(1)-positive contrast agent. Therefore, the new nanoprobe formed from carbonate nanoprobe doped with rare earth ions provides the dual modality of optical and magnetic resonance imaging.  相似文献   

2.
A multifunctional nanoprobe capable of targeting glioma cells, detectable by both magnetic resonance imaging and fluorescence microscopy, was developed. The nanoprobe was synthesized by coating iron oxide nanoparticles with covalently bound bifunctional poly(ethylene glycol) (PEG) polymer, which were subsequently functionalized with chlorotoxin and the near-infrared fluorescing molecule Cy5.5. Both MR imaging and fluorescence microscopy showed significant preferential uptake of the nanoparticle conjugates by glioma cells. Such a nanoprobe could potentially be used to image resections of glioma brain tumors in real time and to correlate preoperative diagnostic images with intraoperative pathology at cellular-level resolution.  相似文献   

3.
Converging advances in the development of nanoparticle-based imaging probes and improved understanding of the molecular biology of brain tumors offer the potential to provide physicians with new tools for the diagnosis and treatment of these deadly diseases. However, the effectiveness of promising nanoparticle technologies is currently limited by insufficient accumulation of these contrast agents within tumors. Here a biocompatible nanoprobe composed of a poly(ethylene glycol) (PEG) coated iron oxide nanoparticle that is capable of specifically targeting glioma tumors via the surface-bound targeting peptide, chlorotoxin (CTX), is presented. The preferential accumulation of the nanoprobe within gliomas and subsequent magnetic resonance imaging (MRI) contrast enhancement are demonstrated in vitro in 9L cells and in vivo in tumors of a xenograft mouse model. TEM imaging reveals that the nanoprobes are internalized into the cytoplasm of 9L cells and histological analysis of selected tissues indicates that there are no acute toxic effects of these nanoprobes. High targeting specificity and benign biological response establish this nanoprobe as a potential platform to aid in the diagnosis and treatment of gliomas and other tumors of neuroectodermal origin.  相似文献   

4.
Old chemistry for novel materials: Self-fluorescent high-relaxivity T(2)-weighted magnetic resonance imaging (MRI) contrast agents are produced. They are a novel type of MR/optical dual-modality in vivo imaging nanoprobe using glutaraldehyde crosslinking chemistry, and they are used to label and monitor therapeutic cells both in vitro and in vivo.  相似文献   

5.
A novel PAMAM dendrimer-based nanoprobe for dual magnetic resonance and fluorescence imaging modalities was synthesized. Fluorescence studies revealed that Gd(III) complexation to the probe has no effect on the quantum yield; however, increases in the dye content resulted in partial quenching. The potential of the new nanoprobe, G6-(Cy5.5)(1.25)(1B4M-Gd)(145), as a dual modality imaging agent was demonstrated in vivo by the efficient visualization of sentinel lymph nodes in mice by both MRI and fluorescence imaging modalities.  相似文献   

6.
Senile plaques, the extracellular deposit of amyloid‐β (Aβ) peptides, are one of the neuropathological hallmarks found in Alzheimer's disease (AD) brain. The current method of brain imaging of amyloid plaques based on positron emission tomography (PET) is expensive and invasive with low spatial resolution. Thus, the development of sensitive and nonradiative amyloid‐β (Aβ)‐specific contrast agents is highly important and beneficial to achieve early AD detection, monitor the disease progression, and evaluate the effectiveness of potential AD drugs. Here a neuroprotective dual‐modal nanoprobe developed by integrating highly Aβ‐specific and turn‐on fluorescence cyanine sensors with superparamagnetic iron oxide nanoparticles as an effective near‐infrared imaging (NIRI)/magnetic resonance imaging (MRI) contrast agent for imaging of Aβ species in vivo is reported. This Aβ‐specific probe is found not only nontoxic and noninvasive, but also highly blood brain barrier permeable. It also shows a potent neuroprotective effect against Aβ‐induced toxicities. This nanoprobe is successfully applied for in vivo fluorescence imaging with high sensitivity and selectivity to Aβ species, and MRI with high spatial resolution in an APP/PS1 transgenic mice model. Its potential as a powerful in vivo dual‐modal imaging tool for early detection and diagnosis of AD in humans is affirmed.  相似文献   

7.
Han E  Ding L  Qian R  Bao L  Ju H 《Analytical chemistry》2012,84(3):1452-1458
A novel sensitive chemiluminescent (CL) imaging method was developed for in situ monitoring of cell surface glycan expression through chemoselective labeling of carbohydrate motifs and then binding to a multifunctional nanoprobe. The nanoprobe was fabricated by assembling biotin-DNA and a large amount of horseradish peroxidase (HRP) on gold nanoparticles (AuNPs). The chemoselective labeling was performed by selective oxidization of the hydroxyl sites of sialyl and galactosyl groups on cell surfaces into aldehydes by periodate and galactose oxidase, respectively, and then aniline-catalyzed hydrazone ligation with biotin hydrazide for specific recognition to avidin. With the biotin-avidin system, the multifunctional nanoprobe could conveniently be bound to the glycan sites on the cell surface. The DNA chain presenting between the AuNPs and biotin assembled on the nanoprobe could obviate the steric effect, and HRP acted to trigger the CL emission of the luminal-H(2)O(2) system. Therefore the expression of both sialyl and galactosyl groups could be selectively monitored by CL imaging with high sensitivity due to the high amount of HRP. Using human liver cancer HCCC-9810 cells as a model, this CL imaging strategy could detect HCCC cells ranging from 6 × 10(2) to 1 × 10(7) cells mL(-1) with a detection limit down to 12 cells. More importantly, this method could be used for distinguishing cancer cells from normal cells and monitoring of dynamic carbohydrate expression on living cells, providing promising application in clinical diagnosis and treatment of cancer.  相似文献   

8.
Luminescent oxygen probes enable direct imaging of hypoxic conditions in cells and tissues, which are associated with a variety of diseases, including cancer. Here, a nanoparticle probe that addresses key challenges in the field is developed, it: i) strongly amplifies room temperature phosphorescence of encapsulated oxygen‐sensitive dyes; ii) provides ratiometric response to oxygen; and iii) solves the fundamental problem of phototoxicity of phosphorescent sensors. The nanoprobe is based on 40 nm polymeric nanoparticles, encapsulating ≈2000 blue‐emitting cyanine dyes with fluorinated tetraphenylborate counterions, which are as bright as 70 quantum dots (QD525). It functions as a light‐harvesting nanoantenna that undergoes efficient Förster resonance energy transfer to ≈20 phosphorescent oxygen‐sensitive platinum octaethylporphyrin (PtOEP) acceptor dyes. The obtained nanoprobe emits stable blue fluorescence and oxygen‐sensitive red phosphorescence, providing ratiometric response to dissolved oxygen. The light harvesting leads to ≈60‐fold phosphorescence amplification and makes the single nanoprobe particle as bright as ≈1200 PtOEP dyes. This high brightness enables oxygen detection at a single‐particle level and in cells at ultra‐low nanoprobe concentration with no sign of phototoxicity, in contrast to PtOEP dye. The developed nanoprobe is successfully applied to the imaging of a microfluidics‐generated oxygen gradient in cancer cells. It constitutes a promising tool for bioimaging of hypoxia.  相似文献   

9.
Chen XC  Deng YL  Lin Y  Pang DW  Qing H  Qu F  Xie HY 《Nanotechnology》2008,19(23):235105
Two new techniques, aptamer-based specific recognition and quantum dot (QD)-based fluorescence labeling, are becoming increasingly important in biosensing. In this study, these two techniques have been coupled together to construct a new kind of fluorescent QD-labeled aptamer (QD-Apt) nanoprobe by conjugating GBI-10 aptamer to the QD surface. GBI-10 is a single-stranded DNA (ssDNA) aptamer for tenascin-C, which distributes on the surface of glioma cells as a dominant extracellular matrix protein. The QD-Apt nanoprobe can recognize the tenascin-C on the human glioma cell surface, which will be helpful for the development of new convenient and sensitive in?vitro diagnostic assays for glioma. The QD-Apt nanoprobe has particular features such as strong fluorescence, stability, monodispersity and uniformity. In addition, this probe preparation method is universal, so it is expected to provide a new type of stable nanoprobe for high-throughput and fast biosensing detection and bioimaging. New methods for real-time and dynamic tracking and imaging can be accordingly developed.  相似文献   

10.
Superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with anti‐epidermal growth factor receptor monoclonal antibody (anti‐EGFR‐SPIONs) were characterised, and its cytotoxicity effects, ex vivo and in vivo studies on Lewis lung carcinoma (LLC1) cells in C57BL/6 mice were investigated. The broadband at 679.96 cm−1 relates to Fe–O, which verified the formation of the anti‐EGFR‐Mab with SPIONs was obtained by the FTIR. The TEM images showed spherical shape 20 and 80 nm‐sized for nanoparticles and the anti‐EGFR‐SPIONs, respectively. Results of cell viability at 24 h after incubation with different concentrations of nanoprobe showed it has only a 20% reduction in cell viabilities. The synthesised nanoprobe administered by systemic injection into C57BL/6 mice showed good Fe tumour uptake and satisfied image signal intensity under ex vivo and in vivo conditions. A higher concentration of nanoprobe was achieved compared to non‐specific and control, indicating selective delivery of nanoprobe to the tumour. It is concluded that the anti‐EGFR‐SPIONs was found to be as an MR imaging contrast nanoagent for lung cancer (LLC1) cells detection.Inspec keywords: toxicology, biomedical MRI, lung, magnetic particles, biomedical materials, nanofabrication, nanomagnetics, transmission electron microscopy, nanomedicine, superparamagnetism, nanoparticles, iron compounds, proteins, cellular biophysics, molecular biophysics, cancer, tumours, Fourier transform infrared spectraOther keywords: MR imaging contrast agent, LLC1, superparamagnetic iron oxide nanoparticles, Lewis lung carcinoma cells, ex vivo conditions, cell viability, antiepidermal growth factor receptor antibody‐based iron oxide nanoparticles, antiEGFR‐SPION, lung cancer cell detection, antiepidermal growth factor receptor monoclonal antibody, cytotoxicity effects, C57BL‐6 mice, antiEGFR‐Mab, FTIR spectra, TEM, spherical shape, incubation, nanoprobe concentrations, systemic injection, Fe tumour uptake, image signal intensity, in vivo conditions, time 24.0 hour, Fe3 O4   相似文献   

11.
Ischemic stroke is one of the major leading causes for long‐term disability and mortality. Collateral vessels provide an alternative pathway to protect the brain against ischemic injury after arterial occlusion. Aiming at visualizing the collaterals occurring during acute ischemic stroke, an integrin αvβ3‐specific Fe3O4–Arg‐Gly‐Asp (RGD) nanoprobe is prepared for magnetic resonance imaging (MRI) of the collaterals. Rat models are constructed by occluding the middle cerebral artery for imaging studies of cerebral ischemia and ischemia–reperfusion on 7.0 Tesla MRI using susceptibility‐weighted imaging sequence. To show the binding specificity to the collaterals, the imaging results acquired with the Fe3O4–RGD nanoprobe and the Fe3O4 mother nanoparticles, respectively, are carefully compared. In addition, an RGD blocking experiment is also carried out to support the excellent binding specificity of the Fe3O4–RGD nanoprobe. Following the above experiments, cerebral ischemia–reperfusion studies show the collateral dynamics upon reperfusion, which is very important for the prognosis of various revascularization therapies in the clinic. The current study has, for the first time, enabled the direct observation of collaterals in a quasi‐real time fashion and further disclosed that the antegrade flow upon reperfusion dominates the blood supply of primary ischemic tissue during the early stage of infarction, which is significantly meaningful for clinical treatment of stroke.  相似文献   

12.
The ability for early evaluation of therapeutic effects is a significant challenge in leukemia research. To address this challenge, we developed a novel electrochemical platform for ultrasensitive and selective detection of apoptotic cells in response to therapy. In order to construct the platform, a novel three-dimensional (3-D) architecture was initially fabricated after combining nitrogen-doped carbon nanotubes and gold nanoparticles via a layer-by-layer method. The formed architecture provided an effective matrix for annexin V with high stability and bioactivity to enhance sensitivity. On the basis of the specific recognition between annexin V and phosphatidylserine on the apoptotic cell membrane, the annexin V/3-D architecture interface showed a predominant capability for apoptotic cell capture. Moreover, a lectin-based nanoprobe was designed by noncovalent assembly of concanavalin A on CdTe quantum dots (QDs)-labeled silica nanospheres with poly(allylamine hydrochloride) as a linker. This nanoprobe incorporated both the specific carbohydrate recognition and the multilabeled QDs-based signal amplification. By coupling with the QDs-based nanoprobe and electrochemical stripping analysis, the proposed sandwich-type cytosensor showed an excellent analytical performance for the ultrasensitive detection of apoptotic cells (as low as 48 cells), revealing great potential toward the early evaluation of therapeutic effects.  相似文献   

13.
Excessive production of reactive oxygen species can lead to alteration of cellular functions responsible for many diseases including cardiovascular diseases, neurodegenerative diseases, cancer, and aging. Hydroxyl radical is a short-lived radical which is considered very aggressive due to its high reactivity toward biological molecules. In this study, a COumarin-NEutral Red (CONER) nanoprobe was developed for detection of hydroxyl radical based on the ratiometric fluorescence signal between 7-hydroxy coumarin 3-carboxylic acid and neutral red dyes. Biocompatible poly lactide-co-glycolide (PLGA) nanoparticles containing encapsulated neutral red were produced using a coumarin 3-carboxylic acid conjugated poly(sodium N-undecylenyl-Nε-lysinate) (C3C-poly-Nε-SUK) as moiety reactive to hydroxyl radicals. The response of the CONER nanoprobe was dependent on various parameters such as reaction time and nanoparticle concentration. The probe was selective for hydroxyl radicals as compared with other reactive oxygen species including O(2)(?-), H(2)O(2), (1)O(2), and OCl(-). Furthermore, the CONER nanoprobe was used to detect hydroxyl radicals in vitro using viable breast cancer cells exposed to oxidative stress. The results suggest that this nanoprobe represents a promising approach for detection of hydroxyl radicals in biological systems.  相似文献   

14.
Zong C  Ai K  Zhang G  Li H  Lu L 《Analytical chemistry》2011,83(8):3126-3132
An effective dual-emission fluorescent silica nanoparticle-based probe has been constructed for rapid and ultrasensitive detection of Cu(2+). In this nanoprobe, a dye-doped silica core served as a reference signal, thus providing a built-in correction for environmental effects. A response dye was covalently grafted on the surface of the silica nanoparticles through a chelating reagent for Cu(2+). The fluorescence of the response dye could be selectively quenched in the presence of Cu(2+), accompanied by a visual orange-to-green color switch of the nanoprobe. The nanoprobe provided an effective platform for reliable detection of Cu(2+) with a detection limit as low as 10 nM, which is nearly 2 × 10(3) times lower than the maximum level (~20 μM) of Cu(2+) in drinking water permitted by the U.S. Environmental Protection Agency (EPA). The high sensitivity was attributed to the strong chelation of Cu(2+) with polyethyleneimine (PEI) and a signal amplification effect. The nanoprobe constructed by this method was very stable, enabling the rapid detection of Cu(2+) in real water samples. Good linear correlations were obtained over the concentration range from 1 × 10(-7) to 8 × 10(-7) (R(2) = 0.99) with recoveries of 103.8-99.14% and 95.5-95.14% for industrial wastewater and lake water, respectively. Additionally, the long-wavelength emission of the response dye can avoid the interference of the autofluorescence of the biosystems, which facilitated their applications in monitoring Cu(2+) in cells. Furthermore, the nanoprobe showed a good reversibility; the fluorescence can be switched "off" and "on" by an addition of Cu(2+) and EDTA, respectively.  相似文献   

15.
Responsive nanoprobes play an important role in bioassay and bioimaging, early diagnosis of diseases and treatment monitoring. Herein, a upconversional nanoparticle (UCNP)‐based nanoprobe, Ru@UCNPs, for specific sensing and imaging of hypochlorous acid (HOCl) is reported. This Ru@UCNP nanoprobe consists of two functional components,, i.e., NaYF4:Yb, Tm UCNPs that can convert near infrared light‐to‐visible light as the energy donor, and a HOCl‐responsive ruthenium(II) complex [Ru(bpy)2(DNCH‐bpy)](PF6)2 (Ru‐DNPH) as the energy acceptor and also the upconversion luminescence (UCL) quencher. Within this luminescence resonance energy transfer nanoprobe system, the UCL OFF–ON emission is triggered specifically by HOCl. This triggering reaction enables the detection of HOCl in aqueous solution and biological systems. As an example of applications, the Ru@UCNPs nanoprobe is loaded onto test papers for semiquantitative HOCl detection without any interference from the background fluorescence. The application of Ru@UCNPs for background‐free detection and visualization of HOCl in cells and mice is successfully demonstrated. This research has thus shown that Ru@UCNPs is a selective HOCl‐responsive nanoprobe, providing a new way to detect HOCl and a new strategy to develop novel nanoprobes for in situ detection of various biomarkers in cells and early disgnosis of animal diseases.  相似文献   

16.
With the fast development of noninvasive diagnosis, the design of multimodal imaging probes has become a promising challenge. If many monofunctional nanocarriers have already proven their efficiency, only few multifunctional nanoprobes have been able to combine the advantages of diverse imaging modalities. An innovative nanoprobe called mesoporous persistent luminescence magnetic nanohybrids (MPNHs) is described that shows both optical and magnetic resonance imaging (MRI) properties intended for in vivo multimodal imaging in small animals. MPNHs are based on the assembly of chromium‐doped zinc gallate oxide and ultrasmall superparamagnetic iron oxide nanoparticles embedded in a mesoporous silica shell. MPNHs combine the optical advantages of persistent luminescence, such as real time imaging with highly sensitive and photostable detection, and MRI negative contrast properties that ensure in vivo imaging with rather high spatial resolution. In addition to their imaging capabilities, these MPNHs can be motioned in vitro with a magnet, which opens multiple perspectives in magnetic vectorization and cell therapy research.  相似文献   

17.
次氯酸(HClO)是一种活性氧(ROS),在许多生理和病理过程中起着至关重要的作用。然而,过量的HClO会导致组织损伤、动脉粥样硬化、神经退行性疾病甚至癌症。因此,实时检测肿瘤细胞中HCl O对于探索HClO在肿瘤进展以及免疫治疗中的作用具有重要意义。与目前常用的工艺复杂、水溶性差的有机分子探针不同,本工作简单地将异硫氰酸荧光素(FITC)与中空介孔普鲁士蓝纳米粒子(HMPB)相结合,构建了一种新型的无机亲水荧光纳米探针。由于内滤光效应,HMPB中FITC的荧光有一定程度的猝灭,但通过Fe2+-ClO氧化还原反应可恢复荧光。体外条件下,加入HClO后, FITC在发射峰(520 nm)处荧光逐渐增强, HClO在5×10–6~50×10–6 mol/L范围内呈良好的线性关系,检出限为2.01×10–6mol/L。此外,在细胞水平上,该纳米探针对癌细胞中的HClO显示出良好的特异检测能力,且灵敏度高。  相似文献   

18.
The carbonaceous nanomaterials known as metallofullerenes have attracted considerable attention due to their attractive properties. The robust nature of the “Trojan Horse” fullerene cage provides an important structural component, which isolates the metal cluster from the bioenvironment. The large carbon surface area is ideally suited for multiple exo‐functionalization approaches to modify the hydrophobic cage for a more hydrophilic bioenvironment. Additionally, peptides and other agents are readily covalently attached to this nanoprobe for targeting applications. The recent progress in developing metallofullerenes for next‐generation biomedical applications is described. Of special interest are magnetic resonance imaging (MRI) contrast agents. Several recent studies reported cumulative gadolinium deposition in the brain and bones of individuals using commercial clinical MRI contrast agents. Gadolinium‐based metallofullerenes provide 2–3 orders of magnitude improvement in MRI relaxivity and potentially lower clinical levels of toxic Gd3+ ions deposited. Other potential biomedical applications are also reviewed herein.  相似文献   

19.
In clinical practice, it is difficult to identify tumor margins during brain surgery due to its inherent infiltrative character. Herein, a unique dual‐modality nanoprobe (Gd‐DOTA‐Ag2S QDs, referred as Gd‐Ag2S nanoprobe) is reported, which integrates advantages of the deep tissue penetration of enhanced magnetic resonance (MR) imaging of Gd and the high signal‐to‐noise ratio and high spatiotemporal resolution of fluorescence imaging in the second near‐infrared window (NIR‐II) of Ag2S quantum dots (QDs). Due to the abundant tumor angiogenesis and the enhanced permeability and retention effect in the tumor, a brain tumor (U87MG) in a mouse model is clearly delineated in situ with the help of the Gd assisted T1 MR imaging and the intraoperative resection of the tumor is precisely accomplished under the guidance of NIR‐II fluorescence imaging of Ag2S QDs after intravenous injection of Gd‐Ag2S nanoprobe. Additionally, no histologic changes are observed in the main organs of the mouse after administration of Gd‐Ag2S nanoprobe for 1 month, indicating the high biocompatibility of the nanoprobe. We expect that such a novel “Detection and Operation” strategy based on Gd‐Ag2S nanoprobe is promising in future clinical applications.  相似文献   

20.
Bimodal imaging with fluorescence in the second near infrared window (NIR‐II) and positron emission tomography (PET) has important significance for tumor diagnosis and management because of complementary advantages. It remains challenging to develop NIR‐II/PET bimodal probes with high fluorescent brightness. Herein, bioinspired nanomaterials (melanin dot, mesoporous silica nanoparticle, and supported lipid bilayer), NIR‐II dye CH‐4T, and PET radionuclide 64Cu are integrated into a hybrid NIR‐II/PET bimodal nanoprobe. The resultant nanoprobe exhibits attractive properties such as highly uniform tunable size, effective payload encapsulation, high stability, dispersibility, and biocompatibility. Interestingly, the incorporation of CH‐4T into the nanoparticle leads to 4.27‐fold fluorescence enhancement, resulting in brighter NIR‐II imaging for phantoms in vitro and in situ. Benefiting from the fluorescence enhancement, NIR‐II imaging with the nanoprobe is carried out to precisely delineate and resect tumors. Additionally, the nanoprobe is successfully applied in tumor PET imaging, showing the accumulation of the nanoprobe in a tumor with a clear contrast from 2 to 24 h postinjection. Overall, this hierarchically nanostructured platform is able to dramatically enhance fluorescent brightness of NIR‐II dye, detect tumors with NIR‐II/PET imaging, and guide intraoperative resection. The NIR‐II/PET bimodal nanoprobe has high potential for sensitive preoperative tumor diagnosis and precise intraoperative image‐guided surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号