首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用硅油与甲苯为混合致孔剂,水相悬浮聚合制备了一系列大孔交联苯乙烯-二乙烯苯树脂。通过改变交联剂DVB用量和致孔剂硅油与甲苯的配比、用量等,研究了所合成的大孔St-DVB共聚物的堆密度、力学强度、比表面积、表面形态及吸附性能。结果表明,硅油与甲苯以一定比例混合作致孔剂时,可得到了一类具特殊结构的小球堆积型(10μm~15μm)大孔共聚物。  相似文献   

2.
本文综述了丙烯酸系树脂合成技术的研究进展.交联剂和致孔剂是影响树脂合成的关键因素,通过改变它们的种类和比例可以得到不同孔结构的吸附树脂.在交联度固定不变时,致孔剂用量越多,孔体积越大,致孔剂的分子量越大,孔径越大.在致孔剂用量一定的情况下,交联度越高,比表面积越大,而孔径则随交联度增加而减小.文章对中极性树脂在多个领域的应用也作了介绍.  相似文献   

3.
通过正交实验设计,采用悬浮聚合技术制备苯乙烯-二乙烯苯系列吸附树脂,以去除模拟废水中的Cr(VI)为目的,对树脂的合成条件进行了研究分析。借助低温物理吸附仪、同步热分析仪和红外光谱考察了树脂物理性能。主要考察了搅拌机的转速、致孔剂的配比、交联度这3个因素对吸附树脂的影响。实验结果表明在制备树脂的过程中致孔剂的配比对合成树脂的物理性能和吸附性能影响最大,其次是交联度。当致孔剂中甲苯与环己烷的配比为2∶1;交联度为20%;搅拌转数为350n/min条件下所制备树脂比表面积为430m2/g,对Cr(VI)的吸附量可达62.16mg/g。  相似文献   

4.
用正交实验的方法对悬浮聚合制备苯乙烯(St)-二乙烯本(DVB)共聚吸附树脂的合成条件进行了研究和分析,借助比表面积测试、红外光谱及热分析仪考察了其物理性能,以树脂对废水中苯酚的吸附为考察目标,研究树脂的吸附性能。实验结果表明在制备树脂的过程中交联度对合成树脂的物理性能和吸附性能影响最大。甲苯为致孔剂,交联度为30%,搅拌转数为300n/min,致孔剂的配比为1:1.0为最佳制备条件。所制备树脂比表面积为428.3m2/g,对苯酚的吸附率可达57%。  相似文献   

5.
实现聚甲基丙烯酸缩水甘油酯互通多孔材料的结构调控,包括增加多孔材料的比表面积和调节孔径的大小,一直是聚合物材料研究的热点之一。采用高内相乳液模板法合成聚甲基丙烯酸缩水甘油酯互通多孔材料,通过扫描电子显微镜、氮气吸附脱附仪和压汞仪等对材料的结构进行了表征,研究了氯化钙(CaCl2)、氯化钠(NaCl)和硫酸镁(MgSO4)3种无机盐的类型及用量对聚甲基丙烯酸缩水甘油酯互通多孔材料比表面积、泡孔、窗孔及毛孔孔径的影响。结果表明:与采用二价无机盐CaCl2和MgSO4比较而言,采用一价无机盐NaCl制备的聚甲基丙烯酸缩水甘油酯互通多孔材料具有较大的比表面积、较小泡孔、窗孔和毛孔孔径;随着无机盐用量的增加,聚甲基丙烯酸缩水甘油酯互通多孔材料的比表面积逐渐增大,而泡孔、窗孔和毛孔孔径逐渐减小。  相似文献   

6.
以醋酸乙烯酯(VAc)为单体,二乙烯基苯(DVB)为交联剂,通过悬浮聚合制备了一系列不同粒径(0.1~0.5mm)的交联聚醋酸乙烯微球,经过醇解,制得了交联聚乙烯醇微球。研究发现,搅拌速度对微球粒径大小影响较大,重点考察了搅拌速度对平均粒径和粒径分布的影响,实验结果表明,随着转速的逐步提升,微球的平均粒径明显减小,粒径分布变窄。通过在聚合过程中引入适当的致孔剂,获得高比表面积的微球,最高可达494.1m2/g,探讨了致孔剂种类和交联剂用量对比表面积的影响。结果表明,当增加交联剂的用量或者加入与共聚物溶度参数相近的致孔剂时,微球的比表面积显著增大。  相似文献   

7.
AN/MAA共聚物泡沫塑料泡体结构研究   总被引:3,自引:0,他引:3  
通过烘箱自由发泡制备丙烯腈(AN)/甲基丙烯酸(MAA)共聚物泡沫塑料,讨论了该泡沫塑料泡孔平均孔径随泡沫塑料密度变化的规律,研究了成核剂和应力对泡沫塑料泡孔尺寸的影响,通过光学显微和电子扫描显微观察了该泡沫塑料的整体结构和微观结构.结果表明: AN/MAA共聚物泡沫塑料泡孔平均孔径随密度的增加而减小;碳酰胺能起到成核剂的作用,显著减小泡沫塑料泡孔尺寸;可发泡共聚物的应力发白现象能改善其发泡成核效果并使泡孔孔径大大减小;该共聚物泡沫塑料具有高闭孔率、各向同性的特征,其泡壁为三至七边形,泡棱由三个泡壁相交而成,泡壁体积分数随密度的增加而减小.  相似文献   

8.
以醋酸乙烯酯(VAc)为单体,二乙烯基苯(DVB)为交联剂,通过悬浮聚合制备了一系列不同粒径(0.1~0.5mm)的交联聚醋酸乙烯微球,经过醇解,制得了交联聚乙烯醇微球。研究发现,搅拌速度对微球粒径大小影响较大,重点考察了搅拌速度对平均粒径和粒径分布的影响,实验结果表明,随着转速的逐步提升,微球的平均粒径明显减小,粒径分布变窄。通过在聚合过程中引入适当的致孔剂,获得高比表面积的微球,最高可达494.1m2/g,探讨了致孔剂种类和交联剂用量对比表面积的影响。结果表明,当增加交联剂的用量或者加入与共聚物溶度参数相近的致孔剂时,微球的比表面积显著增大。  相似文献   

9.
以大蒜皮为碳源,先采用水热法制备炭前驱体,再经KOH活化法制备了高比表面积和高孔体积的多孔炭材料。采用氮气吸附仪、扫描电子显微镜(SEM)和X-射线衍射(XRD)仪对所制多孔炭的孔结构和形貌特性进行表征。结果表明,活化温度对多孔炭材料的比表面积和孔体积影响较大,当活化温度为800℃和KOH/炭前驱体浓度比为2时,得到的多孔炭材料(AC-28)比表面积和孔体积分别高达1 262 m~2/g和0.70 cm~3/g;当活化温度为600℃和KOH/炭前驱体浓度比为2时,多孔炭材料(AC-26)比表面积和孔体积分别为947 m~2/g和0.51 cm~3/g。虽然AC-26样品的比表面积和孔体积均较低,但其微孔率高达98%,使得此材料CO_2吸附性能优异,在25℃和1 bar时的CO_2吸附量高达4.22 mmol/g。常压下影响多孔炭材料中CO_2吸附量的主要因素是微孔率,并不是由比表面积和孔体积决定。当具有合适的孔径结构和比表面积时,生物质基多孔炭材料中微孔率的增加会有效增加CO_2吸附量。  相似文献   

10.
首先通过浓乳液模板法制备了多孔二氧化硅基体,然后采用物理浸渍法将聚乙烯亚胺引入到二氧化硅基体内,制备出一种氨基功能化的多孔二氧化硅材料。采用红外光谱、扫描电镜以及比表面积测试(BET)对材料的结构与形貌进行了表征,分析了浓乳液分散相体积分数对二氧化硅多孔结构的影响。最后研究了固载聚乙烯亚胺(PEI)的二氧化硅多孔材料的二氧化碳吸附性能。结果表明,随着浓乳液分散相体积分数的增加,聚苯乙烯模板材料的泡孔直径减小,由此制得的多孔二氧化硅的平均孔径减小,负载PEI后此种材料的比表面积、孔隙率和孔径均变小,最终所制备的多孔结构固体二氧化碳吸附材料具有吸附容量大与吸附可再生性好的特点,75℃最大吸附容量为3.28 mmol/g。  相似文献   

11.
黄一磊  李忠 《功能材料》2011,42(Z1):99-101,109
采用悬浮法制备了一系列憎水性、高比表面积的多孔树脂,讨论了交联剂用量、致孔剂用量和组成对多孔树脂的吸油烟性能的影响.结果表明,当采用10份质量的DMA作为反应单体,采用90份质量的TRIM作为交联剂,采用100质量的致孔剂(其中甲苯为90份质量,正庚烷为10份质量)时所制得的多孔树脂的吸油烟率最大,达到0.305g/g...  相似文献   

12.
以酚醛树脂为碳前驱体,两亲嵌段共聚物F127为软模板,在碱-酸体系条件下合成非支撑介孔炭膜。通过扫描电镜(SEM)、透射电镜(TEM)、低温氮气吸附-脱附和气体分离测试对炭膜的形貌、孔结构以及气体分离性能进行了测试和表征。结果表明,通过改变软模板剂F127的用量和炭化温度可以实现对炭膜孔结构的控制制备。随着F127与苯酚质量比的增大,炭膜的比表面积、总孔容以及平均孔径呈先增大后减小的趋势;在质量比为1.06时,比表面积达467 m2/g,介孔率为31.3%。随炭化温度由600℃升高至800℃时,炭膜的孔结构由无规则的蠕虫状孔结构转变成丰富的二维六方孔道结构。炭膜厚度约300μm,对CO2和N2具有良好的分离性能,CO2/N2分离系数可达2.53。  相似文献   

13.
PLA-PEG共聚物三维多孔支架的制备及表征   总被引:1,自引:0,他引:1  
将D,L-丙交酯(D,L-LA)与聚乙二醇(PEG)共聚制备了一系列共聚物,并用IR、GPC和1H-NMR对其进行了表征.在此基础上,采用溶剂浇铸-柱子沥滤技术和层叠技术制备了具有一定空间形状的三维多孔组织工程支架,并研究了致孔剂颗粒尺寸及其用量对多孔支架的孔径、孔隙率的影响.结果表明,PLA-PEG共聚物的分子量随着原料中PEG含量的增加而减小;以PLA-PEG共聚物为原料制备多孔支架时,孔径的大小与致孔剂颗粒尺寸有一定的对应关系,孔隙率随着致孔剂用量的增加而增加;采用层叠技术制备的具有一定形状的三维多孔支架符合组织工程对支架材料的一般要求.  相似文献   

14.
为了从样品的微观结构方面解释各种吸气剂吸附量的大小,利用ASAP2010型物理吸附仪,在77 K下对其进行高纯N2吸附和脱附,再结合BET二常数公式法、MP法和BJH法,分析它们的微观结构和吸附量的变化关系。结果表明:样品的吸附等温线属于第Ⅳ类吸附等温线,它们的孔结构多为中孔。与不含Ag2O的样品相比,Ag2O的添加使样品的孔径分布的最高峰向直径减小的方向发展,添加Ag2O的质量分数wAg2O=15%的样品的比表面积和孔容积分别增大了29.2%和4.8%,使其吸附量增大。与添加wAg2O=15%的样品相比,添加wAg2O=30%样品的比表面积和孔容积分别减小了11.7%和12.6%,且其孔径分布曲线的强度小,使其吸附量减小。Ag2O的添加使样品中的微孔消失,并且其平均孔径随wAg2O的增加而减小。但是样品中含有Ag2O后,wAg2O的增减对其平均孔径的影响不大。  相似文献   

15.
采用化学分析、电子能谱仪、X射线衍射仪和吸附仪等方法,对由热产生的甲醇催化剂MK101的结构和活性变化进行研究。结果表明:实验室高温加热可使催化剂晶粒度增大,比表面积下降31%,平均孔径增大21%,孔容下降22.2%;工业使用的催化剂晶粒度增大,比表面积下降38.2%~56.4%,平均孔径增大21%,孔容下降51.4%~57.9%。实验室强热实验后的催化剂与工业使用后的催化剂在结构和活性变化的趋势上相同,比表面积减小和催化活性降低。实验室耐热实验对催化剂小孔径影响小,对大孔径影响大,并生成更多的大孔;而工业使用后的催化剂,对小孔的影响大,对大孔径影响小,使大量小孔变大,小孔的比率明显减小;伴随的结果是催化剂的活性下降和丧失。  相似文献   

16.
以石油渣油为原料,分别采取传统的水蒸气活化和类模板法制备多孔炭材料,并采用氮吸附、XRD和SEM等分析手段对得到的多孔炭进行了表征。结果表明,水蒸气活化制备的多孔炭以微孔为主,且随着活化时间的增加,比表面积增大,炭收率减小。而类模板法制备的多孔炭以中孔为主,且随着MgO/渣油配比值的增加,其比表面积随之增大,炭收率变化不大。  相似文献   

17.
石墨纤维的比表面积与孔隙结构的测定与分析   总被引:1,自引:0,他引:1  
为了定量地描述和分析石墨纤维的比表面积和孔隙结构,采用低温氮吸附法测定石墨纤维在液氮温度和不同压力条件下的氮气吸附-脱附等温曲线.研究表明石墨纤维属于微孔材料,含有大量的微孔和极少量的介孔;石墨纤维的BET比表面积、总孔体积和平均孔径分别为541.00m2/g、0.2436cm3/g、1.8010nm,其微孔的比表面积...  相似文献   

18.
以苯乙烯、二乙烯苯为单体,引入混合溶剂作为致孔剂,采用悬浮聚合的方法制备了多孔交联聚苯乙烯微球,并通过有机萃取等方法带出致孔剂,形成永久性大孔.分析了搅拌速度、分散剂用量、致孔剂等因素对微球粒径分布和孔比表面积的影响,研究了不同工艺条件下的微球形态.结果表明,转速在180r/min左右,分散剂质量分数在0.15%左右时,可以制得粒径范围为0.2~0.8mm的聚苯乙烯微球,且微球具有良好的粒径分布.采用石蜡/甲苯、石蜡/乙酸乙酯为致孔剂时,可以形成纳米级小孔,且当石蜡/甲苯用量为86%时,孔比表面积可达到33.07m2/g,并随着交联剂用量的增加而增大.  相似文献   

19.
采用水热炭化和KOH活化相结合的方法,以生物质莲杆废弃物为碳源,制备了高比表面积多孔炭材料,并探索其CO_2吸附性能。分别采用氮气物理吸附、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和元素分析技术(XPS)对这种莲杆基多孔炭材料的孔道结构、形貌和表面化学等特性进行了研究。结果表明,KOH浓度对莲杆基多孔炭材料的孔结构具有较大影响,莲杆基多孔炭材料的比表面积和孔体积分别为2 893 m~2/g和1.59 cm~3/g,KOH活化处理能在增大多孔炭材料的比表面积和孔体积,同时会在其内部形成部分具有较大尺寸的微孔和较小尺寸的介孔结构。在常压条件下,CO_2的吸附测试表明莲杆基多孔炭材料在25℃和0℃时的吸附量分别高达3.85和6.17 mmol/g,这一吸附量在生物质基多孔炭材料中属于较高水平。然而,具有最高比表面积的莲杆基多孔炭材料(AC-4样品)并不具备最高的CO_2吸附量,这意味着常压条件下限制CO_2吸附量的决定性因素并不是比表面积,而主要由微孔率和孔径分布决定。这一研究结果为设计多孔吸附剂应用于CO_2捕集方面提供了重要意义,也为构建低成本且环境友好的具有高吸附量的CO_2吸附剂提供思路。  相似文献   

20.
以正硅酸乙酯、钛酸正丁酯和聚乙二醇等为主要原料,采用溶胶-凝胶法成功合成了多孔SiO2-TiO2系块状材料。500℃焙烧2h后材料呈现非晶态结构。引入较多钛量时,使材料的孔径分布变窄、平均孔径下降,但增加了比表面积。在80℃热水中浸泡72小时以后,吸附一脱附曲线的类型和形状几乎没有变化;随着Ti含量的增加,比表面积和孔容积的变化率减小。多孔材料在98℃的20%硫酸溶液中重量损失率随Ti含量变化不大,Ti引入并不能提高材料在酸液中的耐蚀性;但引入Ti使多孔材料在95℃NaOH碱液中的耐蚀性明显改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号