首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郭池  唐元洪  裴立宅  张勇 《材料导报》2005,19(Z1):83-86
一维硅纳米材料是重要的纳米电子器件材料,由于其形貌不同,导致的电学等特性也不相同,因此一维硅纳米材料的形貌是重要的研究内容之一.一维硅纳米结构包括纳米线、纳米带及纳米管等,同种一维硅纳米材料由于制备方法不同其形貌也不相同.评述了一维硅纳米材料的形貌及其制备方法.  相似文献   

2.
本文介绍了自组生长硅纳米管的制备,并采用5wt%的HF酸对其稳定性进行了研究。HF酸可去除自组生跃硅纳米管的氧化物外层,只剩下晶体硅纳米管。这说明制备的砗纳米管是一种稳定结构,因而对其应用研究开发成为可能。研究表明,硅纳米管的稳定性与其形成生长过程密切相关。自组生长硅纳米管在纳米器件及场发射甚示屏等方面具有广泛的应用前景。  相似文献   

3.
曹曦  传秀云  黄杜斌 《功能材料》2013,44(14):1984-1989
纤蛇纹石是一种独特的天然硅酸盐矿物纤维,具有纳米中空管状结构,以及表面化学活性和生物活性高等特点,在环境治理、纳米材料制备等领域得到广泛的关注和研究。以纤蛇纹石纳米管为模板,可组装一维量子点和量子线;酸蚀得到的一维氧化硅纳米线也可作为载体合成一维纳米复合材料,在催化、光电等方面有广泛的应用。针对纤蛇纹石独特的纳米管和物理化学性质进行应用研究,发挥其管状结构均一、稳定的优势,对于天然纳米材料的发展具有十分重要的现实意义。  相似文献   

4.
当前在国外纳米材料领域中兴起了一个热门课题--生物分子法制备纳米材料.综合介绍了近几年来生物分子法制备纳米粒子、纳米线、纳米管和纳米阵列等纳米材料的研究进展,提出了今后研究和改进的方向.  相似文献   

5.
介绍了一系列钛氧化物一维纳米材料,包括钛酸纳米管/纳米线、锐钛矿TiO2纳米管以及尖晶石钛酸锂纳米管/纳米线的制备及其特殊的电化学储锂性能,阐明了一维纳米材料在高性能锂离子电池和复合电池中的应用前景。  相似文献   

6.
生物分子模板法制备低维金属纳米材料研究进展(Ⅱ)   总被引:1,自引:0,他引:1  
本文概述了蛋白质、DNA等生物分子模板表面化学沉积制备低维金属纳米材料的最新研究进展。蛋白质可自组装形成不同层次的纳米结构,而DNA分子可自组装形成纳米线和网状结构。这些不同的纳米结构可作为模板,化学沉积,制备金属纳米管、纳米线等一维或二维纳米材料。金属纳米管和纳米线具有导电、导热、磁性和具有特殊的量子效应,在电磁活性复合材料,可控缓释系统、纳米器件和纳米电路等领域有重要的应用前景。  相似文献   

7.
介绍了一种超长含硅一维纳米材料的新的制备方法。使用的设备为一石英管式炉,制备温度在1100℃左右,氩气保护。当采用的前驱体分别为聚二甲基硅油、六甲基二硅烷或六甲基二硅胺烷时分别可得到长度为毫米级的SiC/SiO_2纳米电缆、SiC纳米线和SiCN纳米线。采用上述原料但采用不同催化剂、不同气氛及不同基板时可得到不同成分、不同形貌的含硅一维纳米材料,产物除了上述一维纳米材料外,还可制备非晶SiO_2纳米线、SiCN/SiON纳米电缆、SiC—SiO_2并行复合纳米线、以及非晶SiCN纳米线等。  相似文献   

8.
氧化物辅助生长硅纳米线   总被引:1,自引:0,他引:1  
氧化物辅助生长机理是近年来在合成硅纳米线的过程中发展起来的一种研究一维纳米材料生长的机理,根据此机理已经制备出了多种一维纳米材料.介绍了氧化物辅助生长机理及其根据此机理制备硅纳米线的制备方法,载气、压力及原料等不同条件对合成硅纳米线的影响等进展情况,并对其发展作了展望.  相似文献   

9.
电化学法制备纳米材料的研究现状   总被引:4,自引:1,他引:3  
分析了国内外制备纳米材料的现状,电沉积纳米晶体的优点、方法.重点介绍了利用模板法、电解电镀法、石墨电弧法、直流碳弧法、超声电化学法、直流电弧等离子蒸发-冷凝法、电沉积法制备纳米线、纳米管、纳米多层膜、纳米合金、纳米枝晶和纳米材料的基本方法、合成原理、技术要点以及一些表征等.比较了各种方法的异同点、优缺点及其在不同条件下得到的形态各异的产品.给出了相关技术参数,指出了纳米材料的未来发展方向.  相似文献   

10.
概述了脂类、蛋白质、DNA等生物分子模板表面化学沉积制备低维金属纳米材料的最新研究进展.脂类、蛋白质和DNA分子可自组装形成不同的纳米结构,如纳米管和纳米线等.这些不同的纳米结构可作为模板,化学沉积制备不同的低维金属纳米材料.金属纳米管具有高强度、导电、导热、磁性,在电活性复合材料,药物和海洋防污剂的可控缓释等领域有重要的应用;金属一维纳米线具有特殊的量子效应,可用于纳米器件和纳米电路的开发.该研究可以帮助人们将生物学知识转变为材料学知识,该方法是分子自组装纳米材料和纳米结构走向工程应用的重要途径之一.  相似文献   

11.
王权 《中国科技博览》2009,(32):164-164
本文简要概括了纳米材料在生物传感器中的应用,综述了近年来各类纳米生物传感器的研究进展,包括纳米颗粒生物传感器,纳米管生物传感器,纳米线、纳米棒生物传感器、纳米纤维生物传感器。  相似文献   

12.
利用特制的电弧放电装置,研究了水或液氮中碳电弧放电形成炭纳米材料的机理。借助高分辨率透射电子显微镜对电弧放电生成的产物进行了观察和分析。结果表明:在水或液氮中碳电弧放电可以生成多壁碳纳米管和碳纳米洋葱结构,液氮中碳电弧放电可以生成单壁碳纳米角,水中钴催化碳电弧放电可以生成碳包裹的纳米钴颗粒。横向低频交变磁场会影响碳纳米材料的形核过程,并且可以推测磁场交变的频率5Hz与纳米管、纳米洋葱等结构的生长周期存在某种拟合。根据实验现象,提出了一种解释液体中碳电弧放电过程纳米材料生成的理论模型。  相似文献   

13.
硅纳米线的表征、性能及应用   总被引:1,自引:0,他引:1  
裴立宅  唐元洪  陈扬文  郭池  张勇 《功能材料》2004,35(Z1):2830-2835
硅纳米线是近年来发展起来的一种新型的纳米半导体材料.电镜、X射线光电子能谱(XPS)、拉曼光谱、近边X射线吸收精细结构光谱(NEXAFS)、能量色散X射线分析(EDS)等方法是表征硅纳米线的有效手段,由于硅纳米线具有特殊的光致发光、场发射、电子输运等性能,可以实现在纳米传感器等多种纳米电子器件及合成其它纳米材料的模板方面的应用.本文综述了硅纳米线的表征、性能及应用的最新进展.  相似文献   

14.
一维V2O5是一种非常重要的纳米尺度的材料,可广泛应用于催化剂、电致变色器件、电化学、场效应管、传感器、自旋电子器件以及纳米光刻模板等领域,综述了不同形态的一维V2O5纳米材料(包括纳米线、纳米棒、纳米管、纳米带)的制备方法及其电、磁、电化学和光学性质的最新研究进展。  相似文献   

15.
硅纳米线作为一种新型的一维纳米材料,在纳米电子器件、光电器件及集成电路方面具有很好的应用前景.介绍了硅纳米线在制备方面的国内外研究现状与进展,重点讨论了基于金属催化气-液-固(VLS)生长机理、氧化物辅助生长机理的硅纳米线制备及模板法等制备硅纳米线的研究成果、特点及生长机理.与金属催化VLS生长机理相比,氧化物辅助生长硅纳米线不需要金属催化剂,能避免金属污染,保证了硅纳米线的纯度,因而是今后深入研究的方向.  相似文献   

16.
综述了一维氧化钨纳米材料(纳米线/纳米棒/纳米管/纳米带)制备方法的最新研究进展,介绍了它们潜在的应用价值,提出了该领域中的几个重要问题,并展望了未来的发展趋势.  相似文献   

17.
一维Si纳米材料的研究进展   总被引:2,自引:0,他引:2  
艾飞  刘岩  周燕飞  潘志雷 《材料导报》2004,18(Z2):93-97,105
基于量子限域效应,一维Si纳米材料(硅纳米线等)具有体材料硅所不具备的特异的光学、电学、机械和化学性质,在纳光电子学领域具有潜在的应用价值.通过掺杂或与其它材料的复合,硅纳米线可以用于制作纳电子器件的关键组件,既能作为功能单元也能用于器件互连.综述了硅纳米线(硅纳米管)的制备方法、生长机制、性质及应用和近年来的研究新进展.  相似文献   

18.
一维锗酸盐纳米材料具有良好的光催化、传感、电学及光学特性,在纳米光催化、纳米光学、纳米电学及传感领域具有很好的应用潜力。本文综述了一维锗酸盐纳米材料的合成、性能及应用的研究现状与最新进展情况,重点讨论了利用热蒸发、水热法、化学气相沉积等方法合成锗酸盐纳米线、纳米棒与纳米带以及一维锗酸盐纳米材料在磁性器件、电化学传感器、光催化及锂离子电池方面的应用进展情况,同时指出了一维锗酸盐纳米材料的发展方向。  相似文献   

19.
一维ZnO纳米材料制备技术研究进展   总被引:1,自引:0,他引:1  
氧化锌可用于透明导电膜、表面声波器件、真空荧光显示器、气体传感器、光激射激光器、紫外光探测器等,有广泛发展的产业化前景.近年来,一维ZnO纳米材料(纳米线、纳米带、纳米管等)的制备和应用已成为研究热点.综述了一维ZnO纳米材料制备方法的最新进展.  相似文献   

20.
聚合物一维纳米材料的研究进展   总被引:1,自引:0,他引:1  
综述了聚合物纳米线和纳米管等聚合物一维纳米材料的制备方法、机理和应用。聚合物纳米线的制备方法主要有静电纺丝法、多孔模板法、自组装法三种。聚合物纳米管的制备包括多孔模板法、线模板法、自组装法等方法。本文评述了其研究现状,展望了其可能的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号