首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
We describe the growth of modulation-doped ZnSe/(Zn,Cd)Se quantum wells on (110) GaAs substrates. Unlike the well-known protocol for the epitaxy of ZnSe-based quantum structures on (001) GaAs, we find that the fabrication of quantum well structures on (110) GaAs requires significantly different growth conditions and sample architecture. We use magnetotransport measurements to confirm the formation of a two-dimensional electron gas in these samples, and then measure transverse electron spin relaxation times using time-resolved Faraday rotation. In contrast to expectations based upon known spin relaxation mechanisms, we find surprisingly little difference between the spin lifetimes in these (110)-oriented samples in comparison with (100)-oriented control samples.  相似文献   

2.
Electron spin resonance of two-dimensional (2D) electron gas in Si/SiGe quantum wells allows to evaluate both the longitudinal and the dephasing spin relaxation time. Diakonov–Perel (DP) relaxation, caused by Bychkov–Rashba (BR) spin orbit coupling, occurs to be the dominant mechanism in high mobility samples. For low mobility the Elliott–Yaffet mechanism dominates the longitudinal spin relaxation. When the BR effect is small, inhomogeneous broadening caused by potential fluctuations is seen. We compare spin relaxation of the 2D electron gas in Si and in GaAs quantum wells with respect to applications of these materials in spintronics.  相似文献   

3.
Spin relaxation due to the D'yakonov–Perel' mechanism is intimately related with the spin splitting of the electronic states. We calculate the spin relaxation rates from anisotropic spin splittings of electron subbands in n-(001)-AlGaAs/GaAs quantum structures obtained in a self-consistent multiband approach. The giant anisotropy of spin relaxation rates found for different spin components in the (001) plane can be ascribed to a mutual compensation of terms because of the asymmetry of the bulk crystal and the quantum well structure.  相似文献   

4.
We have investigated the electron spin relaxation rates in GaAs/InGaAs heterostructure in the presence of electric field by time-resolved photoluminescence (PL) measurements at 10 K. Spin-polarized electrons were optically generated in the bulk GaAs region, drifted driven by the electric field, and captured in two InGaAs quantum wells which work as spin detectors. The comparison of the degrees of PL polarizations from two wells, by adjusting excitation energy and electric field, enables us to investigate the electron spin relaxation rates in the different parts of the sample separately. We have found that the spin relaxation during the drift transport in the bulk region is accelerated in the high electric fields and that a significant spin relaxation takes place when electrons are captured into the quantum well.  相似文献   

5.
We have investigated the electron spin relaxation rates in GaAs/InGaAs heterostructure in the presence of electric field by time-resolved photoluminescence (PL) measurements at 10 K. Spin-polarized electrons were optically generated in the bulk GaAs region, drifted driven by the electric field, and captured in two InGaAs quantum wells which work as spin detectors. The comparison of the degrees of PL polarizations from two wells, by adjusting excitation energy and electric field, enables us to investigate the electron spin relaxation rates in the different parts of the sample separately. We have found that the spin relaxation during the drift transport in the bulk region is accelerated in the high electric fields and that a significant spin relaxation takes place when electrons are captured into the quantum well.  相似文献   

6.
Zn1−xCdxSe epitaxial growth by molecular beam epitaxy (MBE) on the GaAs (110) surface cleaved in ultra high vacuum (UHV) was investigated. The growth mode of Zn1−x CdxSe on GaAs (110) was not a simple Stranski–Krastanow type. At initial growth stage, growth mode was two-dimensional type. However, as the growth proceeds three-dimensional island growth and two-dimensional growth modes compete. As a result, two kinds of structures were spontaneously formed on the surface, pyramidal-shaped islands and ridge structures aligned to the [1 0] direction. Anisotropic in-plane strain relaxation on (110) is suggested as the formation mechanism of such structures.  相似文献   

7.
Gate-voltage dependences of nuclear spin relaxation and decoherence times in a Schottky-gated n-GaAs/AlGaAs (110) quantum well (QW) are investigated by time-resolved Kerr-rotation measurements combined with pulsed-rf nuclear magnetic resonance (NMR). We show that the nuclear spin relaxation and decoherence times decrease with decreasing electron density, indicating that the hyperfine interaction is enhanced as the electronic states becomes localized in an impurity-doped QW.  相似文献   

8.
We measured magnetic field depolarization of charged and neutral exciton cw photoluminescence of a system consisting of two coupled quantum wells with a residual concentration of holes. Using the Hanle expression, we obtained exciton lifetime and electron spin relaxation time, which are in agreement with results of time-resolved experiments. We suppose that the tunneling takes place via an emission of an LO phonon and we find this process spin conserving.  相似文献   

9.
We use the combination of nonequilibrium phonon and exciton luminescence techniques to study the spin dynamics in diluted magnetic semiconductor structures with (Cd,Mn)Te and (Cd,Mn)Se quantum dots (QDs). We show that the spin–lattice relaxation (SLR) of Mn ions in these structures differs strongly from the SLR in quantum wells. We explain the results by a model where SLR process in structures with QDs is modified by the spin diffusion on Mn ions from the QD to a wetting layer.  相似文献   

10.
Spin transport and manipulation in semiconductors have been studied intensively with the ultimate goal of realizing spintronic devices. Previous work in GaAs has focused on controlling the carrier density, crystallographic orientation and dimensionality to limit the electron spin decoherence and allow transport over long distances. Here, we introduce a new method for the coherent transport of spin-polarized electronic wave packets using dynamic quantum dots (DQDs) created by the piezoelectric field of coherent acoustic phonons. Photogenerated spin carriers transported by the DQDs in undoped GaAs (001) quantum wells exhibit a spin coherence length exceeding 100 microm, which is attributed to the simultaneous control of the carrier density and the dimensionality by the DQDs during transport. In the absence of an applied magnetic field, we observe the precession of the electron spin induced by the internal magnetic field associated with the spin splitting of the conduction band (Dresselhaus term). The coherent manipulation of the precession frequency is also achieved by applying an external magnetic field.  相似文献   

11.
We report on the effect of post-growth thermal annealing of [011]- ,[011(-)]-, and [010]-oriented quantum dot chains grown by molecular beam epitaxy on GaAs(100) substrates patterned by UV-nanoimprint lithography. We show that the quantum dot chains experience a blueshift of the photoluminescence energy, spectral narrowing, and a reduction of the intersubband energy separation during annealing. The photoluminescence blueshift is more rapid for the quantum dot chains than for self-assembled quantum dots that were used as a reference. Furthermore, we studied polarization resolved photoluminescence and observed that annealing reduces the intrinsic optical anisotropy of the quantum dot chains and the self-assembled quantum dots.  相似文献   

12.
We theoretically investigated the elastic deformation and piezoelectric field in InAs quantum dots grown on (N11) GaAs substrates. Particular attention was given to the influence of the substrate orientation on both the volume deformation of the dot and the strain-induced piezoelectric field. The piezoelectric effects are enhanced by the lower symmetry growth directions. The influence of the piezoelectric fields on the electron and hole ground states for a (N11) quantum dot was also investigated within the effective mass approximation. We find a significant dependence of the fundamental transition energy on the polarity of the substrate's surface.  相似文献   

13.
A pseudomorphic Al0.5Ga0.5As/In0.25Ga0.75As/GaAs asymmetric quantum wire (QWR) structure was grown on GaAs V-grooved substrate by low pressure metal organic vapor phase epitaxy. The formation of crescent shaped QWRs at the bottom of the V-grooves was confirmed by both transmission electron microscopy and photoluminescence (PL) spectra. The temperature dependence of PL spectra demonstrated a fast decrease of the sidewall quantum well PL intensity with increasing temperature, which originates from relaxation of carriers from well to wire region. The self-aligned dual implantation technique was successfully used to selectively disable the adjacent quantum structures. Decrease of the PL intensity of QWR at 8 K was observed after selective implantation, which resulted from a decreased number of carriers relaxed from adjacent quantum structures.  相似文献   

14.
We investigated the photoluminescence of InGaP/GaAs/InGaP heterostructures with the aim to prepare quantum wires by the epitaxial overgrowth of V-groove patterned substrates. Planar and V-groove patterned GaAs semiinsulating substrates were used for epitaxial growth in a low-pressure MOVPE equipment with a horizontal reactor. Low temperature photoluminescence measurements show that the composition of the InGaP ternary compound prepared on the patterned substrates is shifted to a higher InP mole fraction compared with the planar ones. On the other hand, the measurement on the V-grooved samples showed that the PL peak is shifted to higher energies (i.e. to the higher amount of Ga), which indicates a change in the ternary composition of about 5%. Crystalline quality of the overgrown structures was studied by transmission electron microscopy. Both, photoluminescence and photoluminescence polarization measurement show that quantum wires can be successfully prepared in the InGaP/GaAs/InGaP system.  相似文献   

15.
Yan B  Rurali R  Gali A 《Nano letters》2012,12(7):3460-3465
A phosphorus (P) donor has been extensively studied in bulk Si to realize the concept of Kane quantum computers. In most cases the quantum bit was realized as an entanglement between the donor electron spin and the nonzero nuclei spin of the donor impurity mediated by the hyperfine coupling between them. The donor ionization energies and the spin-lattice relaxation time limited the temperatures to a few kelvin in these experiments. Here, we demonstrate by means of ab initio density functional theory calculations that quantum confinement in thin Si nanowires (SiNWs) results in (i) larger excitation energies of donor impurity and (ii) a sensitive manipulation of the hyperfine coupling by external electric field. We propose that these features may allow to realize the quantum bit (qubit) experiments at elevated temperatures with a strength of electric fields applicable in current field-effect transistor technology. We also show that the strength of quantum confinement and the presence of strain induced by the surface termination may significantly affect the ground and excited states of the donors in thin SiNWs, possibly allowing an optical read-out of the electron spin.  相似文献   

16.
用低压金属有机物化学汽相沉积法(MOCVD)在Si(100)无偏角和Si(100)4°偏角衬底上外延生长GaAs层。异质外延采用两步生长法,并分别优化了两种衬底上的非晶低温缓冲层的生长条件。用X射线双晶衍射(XRD)和透射电子显微镜(TEM)对两种衬底上的GaAs外延层进行了结构表征,其中Si(100)4°偏角衬底上1.8μm厚GaAs的(004)面XRD衍射半高全宽338 arcsec,同比在无偏角衬底上的半高全宽为494arcsec,TEM图片显示4°偏角衬底上外延层中的位错密度大大降低。  相似文献   

17.
Highly polarized nuclear spins within a semiconductor quantum dot induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin, or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of quantum-dot-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond timescale of Overhauser fields on the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using coherent control of an ensemble of 10(5) optically polarized nuclear spins by sequences of short radiofrequency pulses. These results open the way to a new class of experiments using radiofrequency techniques to achieve highly correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-μK nuclear spin temperatures, rapid adiabatic passage, and spin squeezing.  相似文献   

18.
He J  Yadavalli K  Zhao Z  Li N  Hao Z  Wang KL  Jacob AP 《Nanotechnology》2008,19(45):455607
The potential benefit from the combination of the optoelectronic and electronic functionality of III-V semiconductors with silicon technology is one of the most desired outcomes to date. Here we have systematically investigated the optical properties of InAs quantum structure embedded in GaAs grown on patterned sub-micron and nanosize holes on Si(001). III-V material tends to accumulate in the patterned sub-micron holes and a material depletion region is observed around holes when GaAs/InAs/GaAs is deposited directly on patterned Si(001). By use of a 60?nm SiO(2) layer and patterning sub-micron and nanosize holes through the oxide layer to the substrate, we demonstrate that high optical quality InAs nanostructures, both quantum dots and quantum wells, formed by a two-monolayer InAs layer embedded in GaAs can be epitaxially grown on Si(001). We also report the power-dependent and temperature-dependent photoluminescence spectra of these structures. The results show that hole diameter (sub-micron versus nanosize) has a strong effect on the structural and optical properties of GaAs/InAs/GaAs nanostructures.  相似文献   

19.
Electron spin resonance (ESR) is a natural candidate for quantum bit manipulation, provided that the confinement of a small number of electrons in a sufficiently small volume can be achieved. An important step is the development of low carrier density materials and structures in which the electron spins are isolated and can be controlled by ESR. We report on the realization of three low-density (n/sub 1/=1.77/spl times/10/sup 10/, n/sub 2/=4.5/spl times/10/sup 10/, and n/sub 3/=9/spl times/10/sup 10/ cm/sup -2/ without the help of a gate to deplete the channel) two-dimensional electron systems in GaAs-AlGaAs single quantum wells (QWs) and on the magnetoresistively detected electron spin resonance (MDESR) measurements in these samples. The MDESR has been characterized at /spl nu/=1 and /spl nu/=3 and the current intensity, microwave power, and temperature dependence have been studied. The structures that have been investigated represent the lowest density single QW samples in which MDESR has been detected. The implications of detection of the MDESR at such low electron density to coupled quantum-dot spin device technology will be presented.  相似文献   

20.
Semiconductor microcavities offer unique means of controlling light-matter interactions in confined geometries, resulting in a wide range of applications in optical communications and inspiring proposals for quantum information processing and computational schemes. Studies of spin dynamics in microcavities, a new and promising research field, have revealed effects such as polarization beats, stimulated spin scattering and giant Faraday rotation. Here, we study the electron spin dynamics in optically pumped GaAs microdisc lasers with quantum wells and interface-fluctuation quantum dots in the active region. In particular, we examine how the electron spin dynamics are modified by the stimulated emission in the discs, and observe an enhancement of the spin-coherence time when the optical excitation is in resonance with a high-quality (Q approximately 5,000) lasing mode. This resonant enhancement, contrary to expectations from the observed trend in the carrier-recombination time, is then manipulated by altering the cavity design and dimensions. In analogy with devices based on excitonic coherence, this ability to engineer coherent interactions between electron spins and photons may provide new pathways towards spin-dependent quantum optoelectronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号