首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Composites were developed using calcium phosphate (CaP)/collagen (COL) doped with Zn+2 to attempt the materials association with adequate properties for biological applications in the recovery of the bone tissue by trauma or pathogenies. Hydroxyapatite (HAP) and hydroxyapatite-βtricalcium phosphate (HAPβTCP) were synthesized and doped with zinc nitrate. High purity grade type I collagen was extracted and purified from bovine pericardium. CaP doped and undoped with Zn+2 were produced with COL and the composites were developed using a simple mixture process. All samples were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction analysis (XRD. In addition, biocompatibility and cell viability were assessed by MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) using osteoblast cell culture. The results have indicated that both morphological and structural features and chemical composition of the composites were very similar to their precursors, collagen and calcium phosphate components. Also, the biocomposites presented a homogeneous aspect with the calcium phosphate particles aggregated to the collagen fibers. The biological evaluation of the composites in vitro showed cellular viability, presenting proliferation of the osteoblasts compared to the control cells (P < 0.05). The composites showed appropriate physical and biological properties creating more biologically active scaffolds that may support bone growth. Therefore, the novel developed biocomposites have high potential to be used for rebuilding small lesions in bone tissue engineering.  相似文献   

2.
Nano phase hydroxyapatite (HA) bioceramics have gained importance in the biomedical field due to their superior biological properties. In this study, nanostructured HA coating was used to increase the bioactivity of a piezoelectric bioceramic, barium titanate (BT). Early reports on the influence of collagen piezoelectricity in remodeling of bone have attracted many researchers to piezoelectric bioceramics such as BT. Hence; porous BT was used as the matrix of a new bone graft composite and then coated with nanostructured HA. BT ceramic was foamed via a direct foaming method with a spray of polyurethane foam. The surface of the foam voids was coated with HA via sol–gel and dip‐coating methods. X‐ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques were used to characterize the prepared coated foam. XRD and TEM analysis showed that the HA coating had a nanostructure with crystallite size of 20–30 nm. SEM images of the prepared samples showed that the HA coating has about 25 µm thickness. The bioactivity of the prepared composite was evaluated in an in vitro study. The variation of Ca2+ and PO43? ions versus time in simulated body fluid (SBF) solution were measured by inductively coupled plasma (ICP) analysis during 1 month and the results showed that the mineralization of calcium phosphate (Ca‐P) on HA coated porous samples was much more than that in non‐coated sample. The SEM micrographs and energy‐dispersive X‐ray spectroscopy (EDS or EDX) analysis of the samples after 1 month of immersing in SBF confirm that Ca‐P phase (bone‐like apatite) was significantly mineralized on HA coated porous BT samples. It was concluded that the nanostructured HA coating would improve the bioactivity of BT foam.  相似文献   

3.
In bone tissue engineering, a highly porous artificial extracellular matrix or scaffold is required to accommodate cells and guide the tissue regeneration in three-dimension. Calcium phosphate (CaP) ceramics are widely used for bone substitution and repair due to their biocompatibility, bioactivity, and osteoconduction. However, compared to alumina ceramics, either in the dense or porous form, the mechanical strength achieved for calcium phosphates is generally lower. In the present work, the major goal was to develop a tri-dimensional macroporous alumina scaffold with a biocompatible PVA/calcium phosphate coating to be potentially used as bone tissue substitute. This approach aims to combine the high mechanical strength of the alumina scaffold with the biocompatibility of calcium phosphate based materials. Hence, the porous alumina scaffolds were produced by the polymer foam replication procedure. Then, these scaffolds were submitted to two different coating methods: the biomimetic and the immersion in a calcium phosphate/polyvinyl alcohol (CaP/PVA) slurry. The microstructure, morphology and crystallinity of the macroporous alumina scaffolds samples and coated with CaP/PVA were characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM/EDX) analysis. Also, specific surface area was assessed by BET nitrogen adsorption method and mechanical behavior was evaluated by axial compression tests. Finally, biocompatibility and cytotoxicity were evaluated by VERO cell spreading and attachment assays under SEM. The morphological analysis obtained from SEM photomicrograph results has indicated that 3D macroporous alumina scaffolds were successfully produced, with estimated porosity of over 65% in a highly interconnected network. In addition, the mechanical test results have indicated that porous alumina scaffolds with ultimate compressive strength of over 3.0 MPa were produced. Concerning to the calcium phosphate coatings, the results have showed that the biomimetic method was not efficient on producing a detectable layer onto the alumina scaffolds. On the other hand, a uniform and adherent inorganic–organic coating was effectively formed onto alumina macroporous scaffold by the immersion of the porous structure into the CaP/PVA suspension. Viable VERO cells were verified onto the surface of alumina porous scaffold samples coated with PVA–calcium phosphate. In conclusion, a new method was developed to produce alumina with tri-dimensional porous structure and uniformly covered with a biocompatible coating of calcium phosphate/PVA. Such system has high potential to be used in bone tissue engineering.  相似文献   

4.
细菌纤维素是具有天然纳米网状结构的支架材料,对其进行氧化改性后可获得可调控的降解性能。通过仿生矿化氧化改性的细菌纤维素支架,制备了可降解羟基磷灰石/氧化细菌纤维素复合骨组织工程支架材料。观察并分析了仿生矿化过程氧化细菌纤维素的降解和羟基磷灰石的形成,并通过SEM、EDS、XRD对羟基磷灰石在可降解氧化细菌纤维素支架上沉积进行了表征,矿化7天的羟基磷灰石/氧化细菌纤维素复合材料表面和内部均有磷灰石形成,测得磷灰石的钙磷比为1.75,主要为羟基磷灰石,伴有少量碳羟磷灰石。结果表明,使用仿生矿化法成功获得了一种新型可降解羟基磷灰石/氧化纤维素复合材料支架。  相似文献   

5.
In this paper, a novel porous scaffold for bone tissue engineering was prepared with nano-hydroxyapatite/collagen/Poly-l-lactic acid (PLLA) composite reinforced by chitin fibres. To enhance the strength of the scaffold further, PLLA was linked with chitin fibres by Dicyclohexylcarbodimide (DCC). The structures of the reinforced scaffold with and without linking were characterized by Scanning Electron Microscopy (SEM). The chemical characteristics of the chitin fibres with and without linking were evaluated by Fourier-transformed infrared (FTIR) spectroscopy. The mechanical performance during degradation in vitro was investigated. The results indicated that the nano-hydroxyapatite/collagen/PLLA composite reinforced by chitin fibres with linking kept better mechanical properties than that of the composite without linking. These results denoted that the stronger interfacial bonding strength of the scaffold with linking could decrease the degradation rate in vitro. The reinforced composite with the link-treatment can be severed as a scaffold for bone tissue engineering.  相似文献   

6.
Surface mineralization is an effective method to produce calcium phosphate apatite coating on the surface of bone tissue scaffold which could create an osteophilic environment similar to the natural extracellular matrix for bone cells. In this study, we prepared mineralized poly(d,l-lactide-co-glycolide) (PLGA) and PLGA/gelatin electrospun nanofibers via depositing calcium phosphate apatite coating on the surface of these nanofibers to fabricate bone tissue engineering scaffolds by concentrated simulated body fluid method, supersaturated calcification solution method and alternate soaking method. The apatite products were characterized by the scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffractometry (XRD) methods. A large amount of calcium phosphate apatite composed of dicalcium phosphate dihydrate (DCPD), hydroxyapatite (HA) and octacalcium phosphate (OCP) was deposited on the surface of resulting nanofibers in short times via three mineralizing methods. A larger amount of calcium phosphate was deposited on the surface of PLGA/gelatin nanofibers rather than PLGA nanofibers because gelatin acted as nucleation center for the formation of calcium phosphate. The cell culture experiments revealed that the difference of morphology and components of calcium phosphate apatite did not show much influence on the cell adhesion, proliferation and activity.  相似文献   

7.
Poly(l-lactic acid)/hydroxyapatite (PLLA/HA) nanocomposite, which combines the properties of PLLA and HA, is suitable to construct scaffold for bone tissue engineering. Its mineralization behavior plays a key role in composite’s property. In this present work, two PLLA/HA composites with porous and compact architecture were fabricated and soaked into simulated body fluid (SBF) at 37 °C for in vitro mineralization, respectively. An attenuated total reflection Fourier transform infrared (ATR FTIR) mapping coupled with principal component analysis was developed to investigate the mineralization kinetics. The FTIR images with an area of 300 × 300 μm2 were collected every 7 days. The results suggest that the mineralization of PLLA/HA composites in SBF follows a zero-order kinetic model, no matter what the architecture is. However, it follows a second-order model when the composite is degraded in phosphate-buffered saline solution based on our previous work. The mechanisms of the in vitro mineralization kinetics in different submersion solutions are discussed. Our results alert researchers that they should choose the mineralization medium cautiously.  相似文献   

8.
Biosynthetic hydroxyapatite (HA) manufactured utilising the bacterium Serratia sp. NCIMB40259 was characterised using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), energy dispersive X-ray analysis (EDX) scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED). SEM/EDX showed that the non-sintered material consisted mainly of calcium-deficient HA (CDHA) with a Ca/P ratio of 1.61 +/- 0.06 and crystal size (from TEM) of 50 +/- 10 nm. ED analysis of non-sintered powder showed resolvable ring patterns ascribed to (0002), ([Formula: see text]) and (0006) planes of crystalline HA. The crystallinity of the samples improved with heat treatment from approximately 9.4% (non-sintered) to 53% (1,200 degrees C). Samples heated at 600 degrees C and sintered at 1,200 degrees C were identified by XRD and FTIR as mainly CDHA with some sodium calcium phosphate in the sintered samples. Ca/P ratios (SEM/EDX) were 1.62 and 1.52, respectively. Single crystal spot patterns characteristic of HA were seen with commercial HA and Serratia HA heated at 600 degrees C. After sintering at 1,200 degrees C the material consisted of needle-like crystals with a length between 86 and 323 nm (from TEM) or 54-111 nm (from XRD) and lattice parameters of a = 9.441 A and c = 6.875 A. This study indicated that the material produced by Serratia bacteria was initially mainly nanophase calcium deficient hydroxyapatite, which sintered to a more highly crystalline form. With further refinements the method could be used as an inexpensive route for hydroxyapatite production for biomaterials applications.  相似文献   

9.
Hydroxyapatite (HA) coating with nanoparticles like nanorice is fabricated on chemically pretreated titanium (Ti) surface, through an electrochemical deposition approach, for biomaterial applications. The Ti surface was chemically patterned with anatase TiO2 nanofibers. These nanofibers were prepared by in situ oxidation of Ti foils in a concentrated solution of H2O2 and NaOH, followed by proton exchange and calcinations. Afterward, TiO2 nanofibers on Ti substrate were coated with HA nanoparticles like nanorice. The obtained samples were annealed at high temperature to produce inter diffusion between TiO2 and HA layers. The resultant layers were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Infrared Spectroscopy (FTIR), corrosion tests in SBF solution, and Electron Probe Micro Analysis (EPMA). It was found that only Ti from the titanium substrate diffuses into the HA coating and a good corrosion resistance in simulated body fluid was obtained.  相似文献   

10.
In this paper, a novel method was developed to prepare mineralized fibroin fiber. We used fibroin gel to control the biomineralization of calcium phosphate and obtained one kind of mineralized fibroin fiber with the length of 1–2 mm. It has the potential to be used to enhance the strength of tissue engineering scaffold. Scanning electron microscopy (SEM) results showed that hydroxyapatite (HA) was mainly deposited on the surface of mineralized fiber. Fourier transform infrared spectroscopy (FTIR) results displayed the red shifts of absorption bands of amide II and amide III (9 and 5 cm−1, respectively), which were related to the strong chemical interaction between HA and fibroin. It was also found that HA was at low content (12.5%) and the ability of gelled fibroin to induce mineralization decreased greatly because of the formation of β-structures in gelled fibroin molecules, which showed the importance of molecular structure in the regulation of the biomineralization process.  相似文献   

11.
ObjectiveThe aim of this study is to induce mineralization of collagen by introducing phosphate groups onto type I collagen from eggshell membrane (ESM) by treating with sodium trimetaphosphate (STMP). This strategy is based on the hypothesis that phosphate groups introduced on collagen can mimic the nucleating role of phosphorylated non-collagenous proteins bound to collagen for inducing mineralization in natural hard tissue.MethodThe collagen membrane was phosphorylated by treating it with a solution of STMP and saturated calcium hydroxide. The phosphorylated collagen was subsequently exposed to a mineralization solution and the pattern of mineralization on the surface of phosphorylated collagen substrate was analyzed. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), field emission electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and microhardness test were used to characterize the collagen substrate and the pattern of minerals formed on the collagen surface.ResultsThe FTIR and EDX results indicated that the phosphate groups were incorporated onto the collagen surface by treatment with STMP. During the mineralization process, the plate-like mineral, octacalcium phosphate (OCP), which was initially formed on the surface of ESM, was later transformed into needle-like hydroxyapatite (HAP) as indicated by the SEM, FESEM, EDX and XRD findings. The microhardness test displayed significant increase in the Knoop hardness number of the mineralized collagen.ConclusionsPhosphate groups can be introduced onto type I collagen surface by treating it with STMP and such phosphorylated collagen can induce the mineralization of type I collagen.  相似文献   

12.
Regeneration of fractured or diseased bones is the challenge faced by current technologies in tissue engineering. The major solid components of human bone consist of collagen and hydroxyapatite. Collagen (Col) and hydroxyapatite (HA) have potential in mimicking natural extracellular matrix and replacing diseased skeletal bones. More attention has been focused on HA because of its crystallographic structure similar to inorganic compound found in natural bone and extensively investigated due to its excellent biocompatibility, bioactivity and osteoconductivity properties. In the present study, electrospun nanofibrous scaffolds are fabricated with collagen (80 mg/ml) and Col/HA (1:1). The diameter of the collagen nanofibers is around 265 ± 0.64 nm and Col/HA nanofibers are 293 ± 1.45 nm. The crystalline HA (29 ± 7.5 nm) loaded into the collagen nanofibers are embedded within nanofibrous matrix of the scaffolds. Osteoblasts cultured on both scaffolds and show insignificant level of proliferation but mineralization was significantly (p < 0.001) increased to 56% in Col/HA nanofibrous scaffolds compared to collagen. Energy dispersive X-ray analysis (EDX) spectroscopy results proved the presence of higher level of calcium and phosphorous in Col/HA nanocomposites than collagen nanofibrous scaffolds grown osteoblasts. The results of the present study suggested that the designed electrospun nanofibrous scaffold (Col/HA) have potential biomaterial for bone tissue engineering.  相似文献   

13.
《Materials Letters》2004,58(27-28):3569-3572
A nano-composite of bone-like apatite/collagen was prepared by a new method—low-temperature in situ synthesis using calcium nitrate, diammoniun hydrogen phosphate and cow hide collagen as starting materials. The composite was investigated via X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that bone-like nanoapatite particles were distributed uniformly in collagen fibrils in the composite. The composite with homogeneous microstructure was similar to natural bone in crystallite phase composition and crystal size. The biomimetic composite is expected to exhibit desirable properties in biomedical applications.  相似文献   

14.
硼酸盐玻璃具有优异的生物相容性、降解性和骨传导性, 在骨组织修复领域受到一定的关注。目前, 硼酸盐玻璃的主要应用形式是支架和微球, 而有关硼酸盐玻璃基骨水泥的制备及性能研究却较少涉及。基于孔隙在骨组织修复材料工程领域中的重要作用, 本研究以NaHCO3和柠檬酸为气体发泡剂制备可注射的多孔硼酸盐玻璃基骨水泥, 通过SEM、XRD和FTIR等方法表征其对骨水泥性能的影响。结果表明: 发泡骨水泥具有良好的注射性, 其注射率高达80%。SEM形貌照片显示骨水泥中大孔已被成功引入, 且孔隙连通, 其孔径介于10 µm到800 µm之间。浸泡结果表明, 发泡骨水泥失重率明显提高。PBS溶液中浸泡30 d后, 发泡骨水泥的失重率高达70%, 而非发泡的骨水泥的失重率只有50%。此外, XRD和FTIR的结果表明, 浸泡产物为羟基磷灰石(HA)。ATR的结果进一步证明了BBG和PBS溶液的反应机理, 表明BBGC中孔隙的引入大大加快了其降解, 促进了矿化反应的进行。  相似文献   

15.
Femoral implantation of regenerated cellulose hydrogels revealed their biocompatible and osteoconductive properties, but a complete osseointegration could not be observed. Phosphorylation was therefore envisaged as the means to enhance cellulose bioactivity. Once implanted, phosphorylated cellulose could promote the formation of calcium phosphates, having therefore closer resemblance to bone functionality and assuring a satisfactory bonding at the interface between hard tissue and biomaterial. In the present work, regenerated cellulose hydrogels were surface modified via phosphorylation. Phosphorylated materials, having varying degrees of substitution, were soaked in a Simulated Body Fluid (SBF) solution in order to investigate their ability to induce the formation of a calcium phosphate layer. Mineralization was assessed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. It was demonstrated that the calcium salt of cellulose phosphates mineralized at a higher extent than materials only phosphorylated. The degree of phosphorylation influenced the extent of surface mineralization. Moderate degrees of surface phosphorylation promoted the highest extent of mineralization. This was attributed to inadequate functionality of the surface in terms of density of PO4 groups and overall surface charge, in the case of low and high phosphate contents.  相似文献   

16.
Compounds belonging to the calcium phosphate (CaP) system are known to be major constituents of bone and are bioactive to different extents in vitro and in vivo. Their chemical similarity makes them prime candidates for implants and bone tissue engineering scaffolds. CaP nanoparticles of amorphous hydroxyapatite (aHA) and dicalcium phosphate dihydrate (DCPD) were synthesized using chemical precipitation. Uniaxially pressed aHA and DCPD powders were subjected to microwave radiation to promote solid state phase transformations resulting in crystalline hydroxyapatite (HA), tricalcium phosphate (TCP) and biphasic compositions: HA/TCP and TCP/calcium pyrophosphate (CPP) and their subsequent densification. Phase composition of microwave sintered compacts was confirmed via X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Solution pH during crystal growth was found to have a profound effect on particle morphology and post-sintered phases, despite constant sintering temperature.Cytocompatibility assessment using 7F2 cells, corresponding to adult mouse osteoblasts, on microwave and conventional, furnace sintered samples demonstrated that manufacturing method does not impact cellular viability after 24 h or proliferation over 7 days. New CaP deposition and extracellular matrix components were observed in vitro via scanning electron microscopy (SEM).  相似文献   

17.
The surface of soft tendon tissue has been modified using calcium phosphate in order for the tendon to directly connect with hard bone and reconstruct an injured ligament. Calcium phosphate was coated onto the tendon in a soaking process using alternating a CaCl2 (200 mM) and a Na2HPO4 (120 mM) solution. According to SEM/EDX observations, calcium phosphate was formed, not only on the tendon surface, but also inside the tendon tissue. When the tendon was treated with seven soaking cycles, calcium phosphate was detected between 0–500 m from the tendon surface. According to TEM observations, the crystal morphology of calcium phosphate depends on the distance from the surface. Hydroxyapatite crystals were observed near the surface, while octa-calcium phosphate crystals could be observed further from the surface, thus at initial soaking. The crystals were formed on collagen fibrils in spaces between the collagen fibrils with the c-axes of the crystals aligned parallel with the collagen fibrils. This finding suggests Ca2+ ions to interact with the tendon surface, most probably with the carboxyl functional groups of collagen, and subsequently forming nucleation centers for the crystals.  相似文献   

18.
The main goal of the present study was to evaluate the effect of different setting accelerator agents on the developed microstructures of calcium phosphate cements (CPCs) by employing the impedance spectroscopy (IS) technique. Six compositions of CPCs were prepared from mixtures of commercial dicalcium phosphate anhydrous (DCPA) and synthesized tetracalcium phosphate (TTCP) as the solid phases. Two TTCP/DCPA molar ratios (1/1 and 1/2) and three liquid phases (aqueous solutions of Na2HPO4, tartaric acid (TA) and oxalic acid (OA), 5% volume fraction) were employed. Initial (I) and final (F) setting times of the cement pastes were determined with Gillmore needles (ASTM standard C266-99). The hardened samples were characterized by X-ray powder diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and apparent density measurements. The IS technique was employed as a non-destructive tool to obtain information related to porosity, tortuosity and homogeneity of the cement microstructures. The formulation prepared from a TTCP/DCPA equimolar mixture and OA as the liquid phase presented the shortest I and F (12 and 20 min, respectively) in comparison to the other studied systems. XRD analyses revealed the formation of low-crystallinity hydroxyapatite (HA) (as the main phase) as well as the presence of little amounts of unreacted DCPA and TTCP after 24 h hardening in 100% relative humidity. This was related to the proposed mechanisms of dissolution of the reactants. The bands observed by FTIR allowed identifying the presence of calcium tartrate and calcium oxalate in the samples prepared from TA and OA, in addition to the characteristic bands of HA. High degree of entanglement of the formed crystals was observed by SEM in samples containing OA. SEM images were also correlated to the apparent densities of the hardened cements. Changes in porosity, tortuosity and microstructural homogeneity were determined in all samples, from IS results, when the TTCP/DCPA ratio was changed from 1/1 to 1/2. The cement formulated from an equimolar mixture of TTCP/DCPA and OA as the liquid phase presented setting times, degree of conversion to low-crystallinity HA and microstructural features suitable to be used as potential bone cement in clinical applications. The IS technique was shown to be a very sensitive and non-destructive tool to relate the paste composition to the developed microstructures. This approach could be very useful to develop calcium phosphate bone cements for specific clinical demands.  相似文献   

19.
The synthesis of an acrylamide-based superporous hydrogel composite (SPHC) with hydroxyapatite (HA) was realized by solution polymerization technique. The characterization studies were performed by FTIR studies, determination of swelling kinetics, measurement of mechanical properties, SEM/EDAX studies and cytocompatibility tests. The FTIR and EDAX studies revealed the incorporation of HA in superporous hydrogel (SPH) structure. The results obtained from swelling experiments showed that, although the extent of swelling was decreased after incorporation of HA in SPH structure, the time to reach the equilibrium swelling was not affected for SPHC. This result indicated that, the presence of HA did not block the capillary channels and the interconnected pore structure was maintained which were consistent with the images obtained from SEM photographs. The results obtained from mechanical tests showed that, in the presence of HA, the compression strength of the hydrogel composite was improved significantly when compared to SPH structure. The compressive modulus for the SPHC increased to 6.59 ± 0.35 N/mm2 whereas it was 0.63 ± 0.04 N/mm2 for the SPH. The cytocompatibility test which was performed by using L929 fibroblasts showed that both the SPH and SPHC materials were cytocompatible towards fibroblasts. The synthesized superporous hydrogel composite possesses suitable properties especially for bone tissue engineering applications and shall be considered as a novel scaffold.  相似文献   

20.
Magnesium(Mg^2+))ion plays important roles in biomineralization of bone,teeth and calcium carbonate skeletons.Herein,chicken eggshells mainly comprising of Mg-calcite nanocrystals(Mg/(Mg+Ca)2.0 mol.%)were used to fabricate biphasic calcium phosphate(BCP),a mixture of hydroxyapatite(HA)and p-tricalcium phosphate(p-TCP)nanocrystals,through hydrothermal reactions at 200℃for 24 h.Our results indicated thatβ-TCP nanocrystals formed through the ion-exchange reactions of Mg-calcite,while HA nanocrystals were mainly produced by dissolution-reprecipitation reactions on the surfaces of eggshell samples in the hydrothermal system.Mg substitution in calcite resulted in formation ofβ-TCP nanocrystals instead of HA crystals through ion-exchange reactions.BCP samples with different compositions(28.6-77.8 wt.%β-TCP)were produced by controlling particle sizes of eggshells for hydrothermal reactions.The larger particles lead to the larger proportion ofβ-TCP in the BCP composition.Therefore,Mg substitution and particle size had synergetic effects on the hydrothermal synthesis of BCP using chicken eggshells through balance of ion-exchange and dissolution-reprecipitation reactions.Cell culture results showed that the BCP products were non-cytotoxic to MC3 T3-E1 cells,which may be used for bone substitute materials in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号