首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Thermal acoustic oscillations are often observed in tubes which penetrate a cryogenic system and are closed at the warm end and open at the cold end. Such tubes are genrally used for filling or vetning the tank, providing relief pressure or inserting instruments taps. Large amounts of heat (of the order of ten to a thousand times more than by normal heat conduction) can be transferred into a cryogenic system when such thermaloscillations occur. A number of studies examining thermal acoustic oscillations in liquid helium systems have been performed by Rott et al. However, only minimal consideration has been given to such oscillationsin liquid and sluch hydrogen systems. This study extends Rott's theory to the stability aspects of thermal acoustic oscillations for a straight tube closed at the warm end and inserted into a Dewar flask filled with triple point liquid hydrogen when the cold open end is located above the liquid surface. These results can also be applied to a slush hydrogen when the pressure in the Dewar flask is reduced to the triple point pressure of hydrogen. Numerical results have been obtained in this study for developing stability curves, establishing oscillation frequency characteristics and identifying critical configurations for initiating such oscillation. The mechanisms associated with the two branches of the stability curves for thermal acoustic oscillations have also been investigated.  相似文献   

2.
Liquid holdup measurement of cryogenic fluids is an area of considerable significance because of its inevitable occurrence in LNG transportation, rocket propellant delivery and superconducting equipment cooling, etc. To measure the liquid holdup of cryogenic two-phase flow, a capacitance sensor was carefully designed, which consists of a pair of optimized concave-electrode form with the electric circuit for the small capacitance detection. Four flow patterns were realized to evaluate the performance of the sensor in visualization experiments with liquid nitrogen and vaporous nitrogen. An image method was employed to calibrate the capacitance sensor, which led to a mathematical relationship between the capacitance and the liquid holdup. The results indicated that the obtained correlation between liquid holdup and capacitance satisfactorily coincided with the measured data.  相似文献   

3.
A cryogenic loop heat pipe (CLHP) has been developed for future aerospace applications at the Technical Institute of Physics and Chemistry (TIPC). It has been demonstrated that this CLHP, when placed horizontally, can operate in liquid-nitrogen temperature range and have a heat transfer capability of up to 12 W with proper working fluid inventory. This paper presents some particular characteristics of the CLHP when the compensation chamber is half-filled with liquid-phase working fluid before startup. The device has been tested at different orientations using nitrogen as the working fluid in order to compare its thermal behavior, specially related to the heat transfer capability, the operation temperature and the thermal resistance, as well as to investigate its operational characteristics under power level as low as 1 W. Tests were performed for the CLHP at horizontal position and with the liquid line 3.4 and 6.4 cm below the vapor line, respectively. The experimental results show the operationability of the CLHP tested at three orientations and tests with the liquid line 6.4 cm below the vapor line show lower operation temperatures and higher heat transfer capability.  相似文献   

4.
低温液体储运具有效率高,供气质量好,压力稳定,供气简便及使用安全的特点,液氦供气杜瓦不仅具有常规杜瓦的要求,而且气压可控,本文主要论述了1000L液氦供气杜瓦的工作原理和结构设计,及主要研制工艺和试验情况,介绍了液氦供气系统的特点,产品于1997年9月投入正常使用,全部性能指标达到设计要求,液氦日蒸发率为0.9%。  相似文献   

5.
This paper examines a novel pressure drop mechanism as well as flow choking conditions that determine mass flow rate in refrigerant expansion devices. For this study, an ideal situation is considered where an expansion device such as a short tube orifice or a thermostatic expansion valve is modeled as an ideal isentropic nozzle. In addition, a liquid with a certain initial degree of superheat is first expanded in the converging nozzle down to the exit section without any phase transition. At the exit section where the metastable liquid jet flashes to produce a complex axisymmetric two-phase flow, a shock wave may terminate the overall expansion process. The model presented here is based on experimental observations in short nozzles, where the metastable liquid in the central core undergoes a sudden phase transition in the interfacial region, giving rise to a high-speed two-phase flow. A simple 1-D analysis of the radial evaporation wave based on the theory of discontinuities from gas dynamics leads to the Chapman–Jouguet (C-J) solution. Flow choking issues are examined and numerical examples are presented for three common refrigerants: R134a, R-22, and R-600a. Results suggest that the evaporation wave may be the flow controlling mechanism in these devices.  相似文献   

6.
New experimental data on the influence of short-tube orifice configuration, including diameter, length, length-to-diameter ratio (L/D), and orientation on the flow pattern, mass flow rate, and pressure distribution of HFC-134a inside the short-tube orifice are presented. Short-tube orifice diameters ranging between 0.605 and 1.2 mm with L/D ranging between 1.87 and 33 are used in the experiments. Three different forms of the metastable liquid flow, which are metastable liquid core flow, conical metastable liquid core flow, and full metastable liquid flow are visually observed. The short-tube orifice diameter has a significant effect on the increase in the flow rate. Conversely, the change in the orientation of the test section has no significant effect on the flow rate. The choke flow phenomenon disappears inside the short-tube orifice when L/D is less than 2.91. Based on the present data, a correlation for predicting the mass flow rate through short-tube orifices is proposed.  相似文献   

7.
A detailed one-dimensional steady and transient numerical simulation of the thermal and fluid-dynamic behavior of capillary tube–suction line heat exchangers has been carried out. The governing equations (continuity, momentum, energy and entropy) for fluid flows, together with the energy equation in solids, are solved iteratively in a segregated manner. The discretized governing equations in the zones with fluid flow are coupled using a fully implicit step-by-step method. An implicit central difference numerical scheme and a line-by-line solver were used in solids. A special treatment has been implemented in order to consider transitions (subcooled liquid region, metastable liquid region, metastable two-phase region and equilibrium two-phase region). All the flow variables (enthalpies, temperatures, pressures, mass fractions, heat fluxes, etc.) together with the thermophysical and transport properties are evaluated at each point of the grid in which the domain is discretized. The numerical model allows analysis of aspects such as geometry, type of fluid, critical or non-critical flow conditions, metastable regions and transient cases. Comparison of the numerical simulation with experimental data presented in the technical literature will be shown in Part II of the present paper.  相似文献   

8.
为ITER CC 10 kA高温超导电流引线服务的低温性能测试装置已研制完成,并成功运行。其低温系统主要由500W/4.5 K氦制冷机,真空杜瓦,低温组件(低温阀门,过冷槽,管道加热器,热防护层),汽化器及低温传输管线等部分组成。本文对真空杜瓦和过冷槽进行设计,并讨论该低温系统的冷却流程方案,最后通过电流引线10 kA稳态实验结果对低温系统的运行效果进行分析,结果表明该低温系统运行稳定,能满足ITER CC电流引线的测试需要。  相似文献   

9.
Modeling of a domestic frost-free refrigerator   总被引:2,自引:0,他引:2  
In the present study, a comprehensive thermo-fluidic model is developed for a domestic frost-free refrigerator. The governing equations, coupled with pertinent boundary conditions, are solved by employing a conservative control volume formulation, in the environment of a three-dimensional unstructured mesh. Experiments are also conducted to validate the results predicted by the present computational model. It is found that the computational and experimental results qualitatively agree with each other, although certain discrepancies can be observed in terms of the exact numerical values obtained. For the freezer compartment, the computationally predicted temperatures are somewhat higher than the experimental ones, whereas for the refrigerating compartment, the computed temperatures are lower than the corresponding experimental observations. The difference between experimental and computational results may be attributed to the lack of precise data on the airflow rates and the unaccounted heat transfer rates through the door gaskets and the compressor. From the heat transfer and fluid flow analysis, certain modifications in the design are also suggested, so as to improve the performance of the refrigerator.  相似文献   

10.
In this study, experiments have been performed for water vapour absorption into 50 and 60 mass% aqueous lithium bromide solution films flowing down a vertical surface to investigate the effects of liquid diffusivity values, molecular properties of the concentrated solutions and non-absorbable gases. The experimental results for wavy films over a film Reynolds number range of 15–90 indicate larger dimensionless mass transfer rates than for strictly laminar flow when the diffusivity of water in a concentrated lithium bromide solution is less than that in a dilute solution. The complete set of results shows that the physical property data for lithium bromide solutions including the diffusivities measured by Kashiwagi are sufficient to explain mass transfer behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号