首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shear-flexure response of steel fiber reinforced concrete (SFRC) beams was investigated.Thirty-six reinforced concrete beams with and without conventional shear reinforcement (stirrups) were tested under a four-point bending configuration to study the effectiveness of steel fibers on shear and flexural strengths, failure mechanisms, crack control, and ductility.The major factors considered were compressive strength (normal strength and high strength concrete up to 100 MPa), shear span-effective depth ratio (a/d = 1.5, 2.5, 3.5), and web reinforcement (none, stirrups and/or steel fibers).The response of RC beams was evaluated based on the results of crack patterns, load at first cracking, ultimate shear capacity, and failure modes.The experimental evidence showed that the addition of steel fibers improves the mechanical response, i.e., flexural and shear strengths and the ductility of the flexural members.Finally, the most recent code-based shear resistance predictions for SFRC beams were considered to discuss their reliability with respect to the experimental findings. The crack pattern predictions are also reviewed based on the major factors that affect the results.  相似文献   

2.
Steel corrosion in reinforced concrete leads to crack occurrence along the reinforcement (secondary cracks), to a reduction in bond strength and a reduction in steel cross section. The purpose of this study is to determine the effect of these deteriorations on the global behaviour of reinforced concrete structural elements in their service and ultimate states. Mechanical experimentation was carried out on fourteen-year-old reinforced concrete beams, on two control elements and two corroded beams. A comparative analysis of the results obtained on the beams showed that concrete cracking in the compressive area had no significant influence on the behaviour in service of the corroded elements. However, significant modifications of service behaviour were observed, due to the degradations in the tensile zone, namely: loss of bending stiffness, dissymmetrical behaviour. Finally, the measure of the residual steel cross-section of the corroded re-bars showed that the loss of bending stiffnes due to steel corrosion cannot be merely explained in terms of steel cross-section reduction. Concerning the ultimate behaviour, the loss of steel cross-section is the main parameter which leads to a reduction of bearing capacity and ductility. Another part will explain the separate and coupling effects of bond strength and steel cross-section loss on the mechanical behaviour of corroded beams.  相似文献   

3.
活性粉末混凝土(RPC)与普通混凝土(OC)相比,具有超高的强度、高韧性和优异的耐久性,其构件承载力与刚度计算方法必然不同于普通混凝土构件。该文对4根钢筋活性粉末混凝土简支梁开展受弯性能足尺试验,获得了梁的开裂弯矩、极限弯矩及荷载-跨中位移曲线,揭示了RPC简支梁受弯变形特征与破坏模式,推导了钢筋RPC简支梁的开裂弯矩与正截面受弯承载力计算公式。结果表明:钢纤维RPC极限压应变为4394 με~5200 με,开裂应变为690 με~820 με,均远大于普通混凝土;由于添加了钢纤维,公式推导时必须考虑RPC拉区拉应力的影响,推导所得开裂弯矩、正截面受弯承载力及刚度公式计算值与试验值吻合较好,计算公式具有较高的精度,可用于钢筋RPC梁的设计计算。  相似文献   

4.
介绍一新的钢筋混凝土双筋梁的计算方法和算例,该法是在单筋梁的计算公式基础上推导而得。受压区混凝土压应力分布仍然采用矩形加抛物线。计算公式形式与单筋梁的相同,简洁明了。在计算钢筋面积时,无须将弯矩分解成两部分,即混凝土受压合力与对应的钢筋拉力组成的力偶矩和受压钢筋与对应的受拉钢筋组成的另一个力偶矩。受拉钢筋总面积可直接求得。在事先制成的计算表格中已自动排除了超筋,即无须验算受压区的最大高度,受拉和受压钢筋的应变均能大于其屈服应变。  相似文献   

5.
火灾下型钢混凝土梁力学性能的研究   总被引:7,自引:1,他引:6  
采用纤维模型法和有限元软件ABAQUS计算了火灾下型钢混凝土梁的变形以及耐火极限,初步了解了型钢混凝土梁的高温力学性能。在此基础上,利用纤维模型法分析了截面尺寸、截面含钢率、受拉钢筋配筋率、型钢屈服强度、钢筋屈服强度、混凝土强度、截面高宽比和钢筋的混凝土保护层厚度等参数对火灾下构件承载力的影响规律,最后提出了型钢混凝土梁耐火极限的实用计算公式。  相似文献   

6.
This paper describes an experimental study on the plastic rotation capacity of reinforced high strength concrete beams. Thirty-six beams with various compressive strengths of concrete, tensile reinforcement ratios, compressive reinforcement ratios, and patterns of loading (1 point loading and 2-point loading) were tested to evaluate the plastic rotation capacity, extreme fiber concrete compressive strain and equivalent plastic hinge length, etc. The same quantities were also obtained from numerical analysis and compared with experimental data. According to the results, the yield curvatures obtained from experiments turned out to be quite close to those obtained from theoretical approach. However, the experimental results for ultimate curvatures were significantly larger than those of theoretical prediction based on the assumption of εcu=0.003. Based on these observations, a new formula for ultimate strain is proposed for high strength concrete beams. Also the test results for plastic rotation capacity were found to be closer to those obtained using moment-curvature relationship considering tension stiffening of concrete and shear effect than those obtained using equivalent plastic hinge length. This substantiates that for accurate evaluation of plastic rotation capacity the consideration of tension stiffening of concrete and shear effect is most important.  相似文献   

7.
为研究玻璃纤维增强聚合物复合材料(GFRP)筋与普通钢筋混合配筋钢纤维增强混凝土(SF/混凝土)梁的受弯性能及其受弯承载力计算方法,在考虑受拉区混凝土抗拉强度的基础上,给出混合配筋SF/混凝土梁的界限配筋率及受弯承载力计算公式;在此基础上设计制作了三种配筋方式的SF/混凝土梁,重点探讨了混合配筋率及筋材面积比(Af/As)对试验梁失效模式和受弯承载力的影响;同时,借助已有相关试验结果,对比分析了混凝土强度对混合配筋SF/混凝土梁受弯性能的影响。试验和对比分析结果表明:混合配筋SF/混凝土梁正截面应变仍符合平截面假定;相同配筋形式下,混合配筋SF/混凝土梁的受弯承载力和跨中挠度随筋材面积比Af/As的增加而增大;单层配筋梁的受弯承载力比双层配筋梁大;合理提高混凝土强度可在充分发挥GFRP筋抗拉作用的同时进一步提高混合配筋SF/混凝土梁的受弯承载力;采用本文给出的界限配筋率公式能有效预测混合配筋SF/混凝土梁的失效模式;梁受弯承载力建议公式的预测值与试验值吻合较好,具有良好的适用性。   相似文献   

8.
Most PET bottles used as beverage containers become waste after their usage, causing environmental problems. To address this issue, a method to recycle wasted PET bottles is presented, in which short fibers made from recycled PET are used within structural concrete. To verify the performance capacity of recycled PET fiber reinforced concrete, it was compared with that of polypropylene (PP) fiber reinforced concrete for fiber volume fractions of 0.5%, 0.75%, and 1.0%. Appropriate tests were performed to measure material properties such as compressive strength, elastic modulus, and restrained drying shrinkage strain. Flexural tests were performed to measure the strength and ductility capacities of reinforced concrete (RC) members cast with recycled PET fiber reinforced concrete. The results show that compressive strength and elastic modulus both decreased as fiber volume fraction increased. Cracking due to drying shrinkage was delayed in the PET fiber reinforced concrete specimens, compared to such cracking in non-reinforced specimens without fiber reinforcement (NF), which indicates crack controlling and bridging characteristics of the recycled PET fibers. Regarding structural member performance, ultimate strength and relative ductility of PET fiber reinforced RC beams are significantly larger than those of companion specimens without fiber reinforcement.  相似文献   

9.
This paper presents an analysis of the influence of prestress and fibers on the shear behaviour of thin-walled I-section beams with reduced shear reinforcement ratio. Reduction of shear reinforcement in prestressed precast beams can make the reinforcement simpler and may increase the productivity in long line precasting beds. The use of short fibers can improve the shear strength and ductility. Nine concrete beams were built (six with prestressing forces) with three different mixtures: without fibers, with steel fibers, and with polypropylene fibers. Shear reinforcement ratios varied from 0 to 0.225% (geometric ratio). It was noted that prestressing increases cracking strength (both in bending and shear), extends the non-cracked area, and makes the compression struts less inclined. In the case of fiber reinforced concrete beams, control of cracking is more effective and consequently deflections are smaller. Ductility is also increased. Both fibers and prestressing reduce stresses in the stirrups and increase shear strength.  相似文献   

10.
Corrosion of reinforcement is a serious problem and is the main cause of concrete structures deterioration costing millions of dollars even though the majority of such structures are at the early age of their expected service life. This paper presents the experimental results of damaged/repaired reinforced concrete beams. The experimental program consisted of reinforced concrete rectangular beam specimens exposed to accelerated corrosion. The corrosion rate was varied between 5% and 15% which represents loss in cross-sectional area of the steel reinforcement in the tension side. Corroded beams were repaired by bonding carbon fiber reinforced polymer (CFRP) sheets to the tension side to restore the strength loss due to corrosion. Different strengthening schemes were used to repair the damaged beams. Test results showed detrimental effect of corrosion on strength as well as the bond between steel reinforcement and the surrounding concrete. Corroded beams showed lower stiffness and strength than control (uncorroded) beams. However, strength of damaged beams due to corrosion was restored to the undamaged state when strengthened with CFRP sheets. On the other hand, the ultimate deflection of strengthened beams was less than ultimate deflection of un-strengthened beams.  相似文献   

11.
The improvement of mechanical strengths of the two constitutes of reinforced concrete (steel and concrete) on the behavior of reinforced High Strength Concrete beams under short term imposed load was investigated both experimentally and numerically. The mechanical strength of concrete (the mean compressive strength varying from 40 MPa to 100 MPa) and the yield steel strength (fγ=540 MPa and 830 MPa) were taken as test parameters, the geometry of beams was kept changeless. A numerical study based on Finite Element Method (FEM) was undertaken to complete and to extend experimental results. The use of High Strength Reinforced Concrete made with HSC and High Yield Strength Steel induces an increase in the ultimate load. The longitudinal reinforcement ratio can be decreased by using High Yield Strength Steel, Nevertheless a lower stiffness and higher crack width can be observed. At a given load level, a decrease of the mean crack width due to higher mechanical strength of concrete can also be observed.  相似文献   

12.
In the last two decades, the use of advanced composite materials such as Fiber Reinforced Polymers (FRP) in strengthening reinforced concrete (RC) structural elements has been increasing. Research and design guidelines concluded that externally bonded FRP could increase the capacity of RC elements efficiently. However, the linear stress–strain characteristics of FRP up to failure and lack of yield plateau have a negative impact on the overall ductility of the strengthened RC elements. Use of hybrid FRP laminates, which consist of a combination of either carbon and glass fibers, or glass and aramid fibers, changes the behaviour of the material to a non-linear behaviour. This paper aims to study the performance of reinforced concrete beams strengthened by hybrid FRP laminates.

This paper presents an experimental program conducted to study the behaviour of RC beams strengthened with hybrid fiber reinforced polymer (HFRP) laminates. The program consists of a total of twelve T-beams with overall dimensions equal to 460 × 300 × 3250 mm. The beams were tested under cyclic loading up to failure to examine its flexural behaviour. Different reinforcement ratios, fiber directions, locations and combinations of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) laminates were attached to the beams to determine the best strengthening scheme. Different percentages of steel reinforcement were also used. An analytical model based on the stress–strain characteristics of concrete, steel and FRP was adopted. Recommendations and design guidelines of RC beams strengthened by FRP and HFRP laminates are introduced.  相似文献   


13.
This paper presents research results of ten high-strength reinforced concrete beams and steel fiber-reinforced high strength concrete beams, with steel fiber content of 1% by volume. The enlarged ends of mild carbon steel fibers with three different dimensions were selected. This research shows that the flexural rigidity before yield stage and the displacement at 80% ultimate load in the descending curve are improved, and crack number and length at comparable loads is reduced after the addition of steel fibers. The descending part of the load-displacement curve of the concrete beams without steel fibers is much steeper than that with steel fibers, which shows that the addition of steel fibers makes the high strength concrete beams more ductile.  相似文献   

14.
Tension stiffening is still a matter of discussion into the scientific community; the study of this phenomenon is even more relevant in structural members where the total reinforcement consists of a proper combination of traditional rebars and steel fibers. In fact, fiber reinforced concrete is now a worldwide-used material characterized by an enhanced behavior at ultimate limit states as well as at serviceability limit states, thanks to its ability in providing a better crack control.This paper aims at investigating tension stiffening by discussing pure-tension tests on reinforced concrete prisms having different sizes, reinforcement ratios, amount of steel fibers and concrete strength. The latter two parameters are deeply studied in order to determine the influence of fibers on crack patterns as well as the significant effect of the concrete strength; both parameters determine narrower cracks characterized by a smaller crack width.  相似文献   

15.
 对高性能复合砂浆钢筋混凝土加固受火RC梁的抗剪承载力进行理论推导,并结合实验数据和工程实例验证理论公式的合理性.结合国内外对火灾后钢筋混凝土结构中混凝土和钢筋强度变化的研究,考虑火灾和火灾后冷却条件对混凝土和钢筋强度及性能的影响,提出计算模型.假定钢筋和混凝土之间无相对滑移,忽略混凝土的抗拉强度,不考虑温度—应力的耦合作用,采用等效截面法得到等效截面为T形截面,以桁架 拱模型和软化桁架理论为基础,结合极限平衡原理,考虑拉应变存在条件下混凝土抗压强度的软化.分析结果表明,推导所得的计算公式与试验数据比较吻合,高性能复合砂浆钢筋网加固方法能使梁的抗剪承载力得到显著提高,能满足实际工程的应用.  相似文献   

16.
The effect of polypropylene and steel fibers on high strength lightweight aggregate concrete is investigated. Sintered fly ash aggregates were used in the lightweight concrete; the fines were partially replaced by fly ash. The effects on compressive strength, indirect tensile strength, modulus of rupture, modulus of elasticity, stress–strain relationship and compression toughness are reported. Compared to plain sintered fly ash lightweight aggregate concrete, polypropylene fiber addition at 0.56% by volume of the concrete, caused a 90% increase in the indirect tensile strength and a 20% increase in the modulus of rupture. Polypropylene fiber addition did not significantly affect the other mechanical properties that were investigated. Steel fibers at 1.7% by volume of the concrete caused an increase in the indirect tensile strength by about 118% and an increase in the modulus of rupture by about 80%. Steel fiber reinforcement also caused a small decrease in the modulus of elasticity and changed the shape of the stress–strain relationship to become more curvilinear. A large increase in the compression toughness was recorded. This indicated a significant gain in ductility when steel fiber reinforcement is used.  相似文献   

17.
This research studied the diagonal tension behavior of 16 beams reinforced with longitudinal bars and steel fibers. The variable parameters included the concrete compressive strength and the percentage of fibers (0%, 0.5%, 1.0% and 1.5% by volume). The beams were tested under static loads resulting in high diagonal tension stresses. The shear reinforcement was composed of stirrups instrumented with strain gages to detect the effect of the fibers on the strains. Research results indicate that as the fiber volume increases, the shear strength and the ductility of the beams increased, providing significantly higher shear strength than specified by the ACI-318 Code.  相似文献   

18.
Analytical studies on the effect of depth of beam and several parameters on the shear strength of reinforced concrete beams are reported. A large data base available has been segregated and a nonlinear regression analysis (NLRA) has been performed for developing the refined design models for both, the cracking and the ultimate shear strengths of reinforced concrete (RC) beams without web reinforcement. The shear strength of RC beams is size dependent, which needs to be evaluated and incorporated in the appropriate size effect models. The proposed models are functions of compressive strength of concrete, percentage of flexural reinforcement and depth of beam. The structural brittleness of large size beams seems to be severe compared with highly ductile small size beams at a given quantity of flexural reinforcement. The proposed models have been validated with the existing popular models as well as with the design code provisions.  相似文献   

19.
This study investigates the effectiveness of steel fibers and minimum amount of stirrups on the shear response of various sized reinforced high-strength concrete (HSC) beams. For this, six large reinforced HSC beams with a shear span-to-depth ratio (a/d) of 3.2 were manufactured. Three of them contained 0.75% (by volume) steel fibers without stirrups as per ACI Committee 318, while the rest were reinforced with the minimum amount of stirrups without fibers. Test results indicate that, with increasing beam size, significantly lower shear strength was obtained for steel fiber-reinforced high-strength concrete (SFR-HSC) beams without stirrups, than for the plain HSC beams with stirrups. The inclusion of steel fibers effectively limited crack propagation, produced more diffused initial flexural cracks, and led to higher post-cracking stiffness, compared to plain HSC. On the other hand, the use of minimum stirrups gave better shear cracking behaviors than that of steel fibers, and effectively mitigated the size effect on shear strength. Therefore, a large decrease in shear strength, with an increase in the beam size, was only obtained for SFR-HSC beams without stirrups. A shear strength decrease of 129% was obtained by increasing the effective depth from 181 mm to 887 mm. The shear strengths of reinforced steel fiber-reinforced concrete beams were not accurately predicted by most previous prediction models. Therefore, a new shear strength formula, based on a larger dataset, that considers the size effect, is required.  相似文献   

20.
欧佳灵  邵永波 《工程力学》2019,36(10):180-188
对碳纤维增强复合材料(CFRP)加固圆钢管混凝土(C-CFST)短柱的轴向承载力进行了理论研究。基于连续介质力学,考虑钢管与混凝土处于三向应力状态,CFRP处于环向受拉的应力状态,建立了CFRP-圆钢管混凝土(C-CFRP-CFST)短柱的理论分析模型。通过理论推导,得到了轴压作用下C-CFRP-CFST短柱的屈服承载力及极限承载力的理论计算公式,并将理论解与已有试验值做比对,证明了理论公式预测的精度。最后采用提出的理论公式对C-CFRP-CFST短柱的轴向承载性能进行了参数分析。研究表明:提高钢管屈服强度及混凝土立方抗压强度或减小钢管径厚比Ds/ts,都会提高C-CFRP-CFST短柱的极限承载力及屈服承载力;增加CFRP层数和CFRP环向抗拉强度也会提高极限承载力,但CFRP层数对屈服承载力影响较小,CFRP的抗拉强度对屈服承载力没有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号