首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reversible atomic-mass transport along graphene devices has been achieved. The motion of Al and Au in the form of atoms or clusters is driven by applying an electric field between the metal electrodes that contact the graphene sheet. It is shown that Al moves in the direction of the applied electric field whereas Au tends to diffuse in all directions. The control of the motion of Al is further demonstrated by achieving a 90° turn, using a graphene device patterned in a crossroads configuration. The controlled motion of Al is attributed to the charge transfer from Al onto the graphene so that the Al is effectively charged and can be accelerated by the applied electric field. To get further insight into the actuation mechanism, theoretical simulations of individual Al and Au impurities on a perfect graphene sheet were performed. The direct (electrostatic) force was found to be ~1 pN and dominant over the wind force. These findings hold promise for practical use in future mass transport in complex circuits.  相似文献   

2.
G Hu  M Mao  S Ghosal 《Nanotechnology》2012,23(39):395501
Molecular dynamics simulation is utilized to investigate the ionic transport of NaCl in solution through a graphene nanopore under an applied electric field. Results show the formation of concentration polarization layers in the vicinity of the graphene sheet. The nonuniformity of the ion distribution gives rise to an electric pressure which drives vortical motions in the fluid if the electric field is sufficiently strong to overcome the influence of viscosity and thermal fluctuations. The relative importance of hydrodynamic transport and thermal fluctuations in determining the pore conductivity is investigated. A second important effect that is observed is the mass transport of water through the nanopore, with an average velocity proportional to the applied voltage and independent of the pore diameter. The flux arises as a consequence of the asymmetry in the ion distribution which can be attributed to differing mobilities of the sodium and chlorine ions and to the polarity of water molecules. The accumulation of liquid molecules in the vicinity of the nanopore due to re-orientation of the water dipoles by the local electric field is seen to result in a local increase in the liquid density. Results confirm that the electric conductance is proportional to the nanopore diameter for the parameter regimes that we simulated. The occurrence of fluid vortices is found to result in an increase in the effective electrical conductance.  相似文献   

3.
Au nanoparticles and films are deposited onto clean graphene surfaces to study the doping effect of different Au configurations. Micro‐Raman spectra show that both the doping type and level of graphene can be tuned by fine control of the Au deposition. The morphological structures of Au on graphene are imaged by transmission electron microscopy, which indicate a size‐dependent electrical characteristic: isolated Au nanoparticles produce n‐type doping of graphene, while continuous Au films produce p‐type doping. Accordingly, graphene field‐effect transistors are fabricated, with the in situ measurements suggesting the tunable conductivity type and level by contacting with different Au configurations. For interpreting the experimental observations, the first‐principles approach is used to simulate the interaction within graphene–Au systems. The results suggest that, different doping properties of Au–graphene systems are induced by the chemical interactions between graphene and the different Au configurations (isolated nanoparticle and continuous film).  相似文献   

4.
目的制备磁性石墨烯,实现其定向排列,为进一步制备性能良好的热界面材料提供定向导热相。方法采用聚合物包覆和层层组装技术,在石墨烯表面均匀包覆带负电荷的聚磺苯乙烯(PSS)聚电解质层,然后在静电力作用下包覆一层带正电荷的聚二烯丙基二甲基氯化铵(PDDA)聚电解质。最后,借助静电力使带负电荷的磁性Fe3O4纳米粒子在附着有PDDA层的石墨烯表面形成均匀的致密覆盖层,得到磁性石墨烯,并在外磁场作用下使磁性石墨烯进行定向排列。结果采用聚电解质层层组装技术可有效地对石墨烯进行磁性化处理;粉状石墨烯比片状石墨烯定向排列效果明显;以片状石墨烯为原材料的实验条件下,加入聚电解PSS、PDDA的量越多,磁性化效果更佳。结论通过聚电解质层层组装技术可有效地对石墨烯进行磁性化处理,并在磁场作用下实现定向排列。  相似文献   

5.
将石墨烯有效地集成到微纳器件上实现组装是石墨烯得以应用的重要先决条件。采用介电电泳法对二维纳米材料石墨烯进行组装,研究介电电泳组装过程参数包括外加交变电压幅值、石墨烯悬浮液浓度和外加电场作用时间对组装的影响。结果表明:组装到电极之间的石墨烯数量随着上述组装参数值的增大而增加,其中石墨烯悬浮液浓度的影响最为显著。组装后石墨烯的I-V特性曲线呈现良好的直线性,依据组装石墨烯数量的不同,电阻在数kΩ到数百kΩ之间,表明石墨烯与金属电极之间具有较高的接触电阻。采用局部焦耳热法可以有效地降低石墨烯的接触电阻,在电压幅值为3.6V时,降阻效果最优,电阻下降幅度为47.91%。  相似文献   

6.
Chemical vapor deposition has proved to be successful in producing graphene samples on silicon carbide (SiC) homogeneous at the centimeter scale in terms of Hall conductance quantization. Here, we report on the realization of co-planar diffusive Al/ monolayer graphene/ Al junctions on the same graphene sheet, with separations between the electrodes down to 200 nm. Robust Josephson coupling has been measured for separations not larger than 300 nm. Transport properties are reproducible on different junctions and indicate that graphene on SiC substrates is a concrete candidate to provide scalability of hybrid Josephson graphene/superconductor devices.  相似文献   

7.
Coplanar Al/graphene/Al junctions fabricated on the same graphene sheet deposited on silicon carbide (SiC), show robust Josephson coupling at subKelvin temperature, when the separations between the electrodes is below 400 nm. Remarkably, a hysteretic Critical State sets in when ramping an orthogonal magnetic field, with a sudden collapse of the Josephson critical current I c when turning the field on, and a revival of I c when inverting the sweep. Similar hysteresis can be found in granular superconducting films which may undergo the Berezinskii-Kosterlitz-Thouless transition. Here, we give quantitative arguments to prove that this odd behavior of the magnetoconductance gives evidence for an incipient Berezinskii-Kosterlitz-Thouless transition with drift and pinning of fluctuating free vortices induced by the current bias.  相似文献   

8.
The atomic structure of free‐standing graphene comprises flat hexagonal rings with a 2.5 Å period, which is conventionally considered the only atomic period and determines the unique properties of graphene. Here, an unexpected highly ordered orthorhombic structure of graphene is directly observed with a lattice constant of ≈5 Å, spontaneously formed on various substrates. First‐principles computations show that this unconventional structure can be attributed to the dipole between the graphene surface and substrates, which produces an interfacial electric field and induces atomic rearrangement on the graphene surface. Further, the formation of the orthorhombic structure can be controlled by an artificially generated interfacial electric field. Importantly, the 5 Å crystal can be manipulated and transformed in a continuous and reversible manner. Notably, the orthorhombic lattice can control the epitaxial self‐assembly of amyloids. The findings reveal new insights about the atomic structure of graphene, and open up new avenues to manipulate graphene lattices.  相似文献   

9.
Graphene is widely applied as an electrode material in energy storage fields. However, the strong π–π interaction between graphene layers and the stacking issues lead to a great loss of electrochemically active surface area, damaging the performance of graphene electrodes. Developing 3D graphene architectures that are constructed of graphene sheet subunits is an effective strategy to solve this problem. The graphene architectures can be directly utilized as binder‐free electrodes for energy storage devices. Furthermore, they can be used as a matrix to support active materials and further improve their electrochemical performance. Here, recent advances in synthesizing 3D graphene architectures and their composites as well as their application in different energy storage devices, including various battery systems and supercapacitors are reviewed. In addition, their challenges for application at the current stage are discussed and future development prospects are indicated.  相似文献   

10.
Graphene is a 2D sheet of sp2 bonded carbon atoms and tends to aggregate together, due to the strong π–π stacking and van der Waals attraction between different layers. Its unique properties such as a high specific surface area and a fast mass transport rate are severely blocked. To address these issues, various kinds of 2D holey graphene and 3D porous graphene are either self‐assembled from graphene layers or fabricated using graphene related materials such as graphene oxide and reduced graphene oxide. Porous graphene not only possesses unique pore structures, but also introduces abundant exposed edges and accelerates mass transfer. The properties and applications of these porous graphenes and their composites/hybrids have been extensively studied in recent years. Herein, recent progress and achievements in synthesis and functionalization of various 2D holey graphene and 3D porous graphene are reviewed. Of special interest, electrochemical applications of porous graphene and its hybrids in the fields of electrochemical sensing, electrocatalysis, and electrochemical energy storage, are highlighted. As the closing remarks, the challenges and opportunities for the future research of porous graphene and its composites are discussed and outlined.  相似文献   

11.
Wafer scale homogeneous bilayer graphene films by chemical vapor deposition   总被引:1,自引:0,他引:1  
Lee S  Lee K  Zhong Z 《Nano letters》2010,10(11):4702-4707
The discovery of electric field induced band gap opening in bilayer graphene opens a new door for making semiconducting graphene without aggressive size scaling or using expensive substrates. However, bilayer graphene samples have been limited to μm(2) size scale thus far, and synthesis of wafer scale bilayer graphene poses a tremendous challenge. Here we report homogeneous bilayer graphene films over at least a 2 in. × 2 in. area, synthesized by chemical vapor deposition on copper foil and subsequently transferred to arbitrary substrates. The bilayer nature of graphene film is verified by Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. Importantly, spatially resolved Raman spectroscopy confirms a bilayer coverage of over 99%. The homogeneity of the film is further supported by electrical transport measurements on dual-gate bilayer graphene transistors, in which a band gap opening is observed in 98% of the devices.  相似文献   

12.
The present article deals with the vibrational analysis of multi-layered graphene sheets with different boundary conditions amongst sheets. An elastic multiple-plate model is utilized in which the nested plates are coupled with each other through the van der Waals interlayer force. The interaction of van der Waals forces between adjacent and non-adjacent layers and the reaction from the surrounding media are included in the Reissner–Mindlin-type field equations on which the theoretical formulation is based. The set of coupled equations of motion for the multi-layered graphene sheets is then solved by the generalized differential quadrature method. The numerical analysis presented herein provides the possibility of considering various combinations of layerwise boundary conditions in a multi-layered graphene sheet. Based on exact solution, explicit formulas for the frequencies of a double-layered graphene sheet with all edges simply supported are also obtained. The results of the present numerical solution are shown to be in excellent agreement with those of exact solution for simply supported graphene sheets.  相似文献   

13.
石墨烯外延生长及其器件应用研究进展   总被引:3,自引:0,他引:3  
石墨烯具有优异的物理和电学性能, 已成为物理和半导体电子研究领域的国际前沿和热点之一. 本文简单介绍了石墨烯的物理及电学特性, 详细评述了在众多制备方法中最有希望实现石墨烯大面积、高质量的外延生长技术, 系统论述了不同SiC和金属衬底外延生长石墨烯的研究进展, 并简要概述了石墨烯在场效应晶体管、发光二极管、超级电容器及锂离子电池等光电器件方面的最新研究进展. 外延生长法已经初步实现了从纳米、微米、厘米量级石墨烯的成功制备, 同时可实现其厚度从单层、双层到少数层的调控, 有望成为高质量、与传统电子工艺兼容、低成本、大面积的石墨烯宏量制备技术, 为其器件应用奠定基础.  相似文献   

14.
The fine control of graphene doping levels over a wide energy range remains a challenging issue for the electronic applications of graphene. Here, the controllable doping of chemical vapor deposited graphene, which provides a wide range of energy levels (shifts up to ± 0.5 eV), is demonstrated through physical contact with chemically versatile graphene oxide (GO) sheets, a 2D dopant that can be solution‐processed. GO sheets are a p‐type dopant due to their abundance of electron‐withdrawing functional groups. To expand the energy window of GO‐doped graphene, the GO surface is chemically modified with electron‐donating ethylene diamine molecules. The amine‐functionalized GO sheets exhibit strong n‐type doping behaviors. In addition, the particular physicochemical characteristics of the GO sheets, namely their sheet sizes, number of layers, and degree of oxidation and amine functionality, are systematically varied to finely tune their energy levels. Finally, the tailor‐made GO sheet dopants are applied into graphene‐based electronic devices, which are found to exhibit improved device performances. These results demonstrate the potential of GO sheet dopants in many graphene‐based electronics applications.  相似文献   

15.
We applied the scanning probe lithographic technique to a graphite patterning in air and analyzed the patterned sample with the lateral force microscopy and Raman spectroscopy. The local electric field generated from a tip caused either etching or oxidization depending on the electric field intensity in air. We have found that the frictional force between the tip and local oxidized graphite surface was increased remarkably from lateral force analysis. Also, it was found that the graphene layer was peeled from the graphite surface in the etching process, which could be a potential tool as a top-down nano-fabrication process for the graphene nano device without contamination.  相似文献   

16.
X Zhou  CM Shade  AL Schmucker  KA Brown  S He  F Boey  J Ma  H Zhang  CA Mirkin 《Nano letters》2012,12(9):4734-4737
We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.  相似文献   

17.
Graphene-based vertical spin valves (SVs) are expected to offer a large magnetoresistance effect without impairing the electrical conductivity, which can pave the way for the next generation of high-speed and low-power-consumption storage and memory technologies. However, the graphene-based vertical SV has failed to prove its competence due to the lack of a graphene/ferromagnet heterostructure, which can provide highly efficient spin transport. Herein, the synthesis and spin-dependent electronic properties of a novel heterostructure consisting of single-layer graphene (SLG) and a half-metallic Co2Fe(Ge0.5Ga0.5) (CFGG) Heusler alloy ferromagnet are reported. The growth of high-quality SLG with complete coverage by ultrahigh-vacuum chemical vapor deposition on a magnetron-sputtered single-crystalline CFGG thin film is demonstrated. The quasi-free-standing nature of SLG and robust magnetism of CFGG at the SLG/CFGG interface are revealed through depth-resolved X-ray magnetic circular dichroism spectroscopy. Density functional theory (DFT) calculation results indicate that the inherent electronic properties of SLG and CFGG such as the linear Dirac band and half-metallic band structure are preserved in the vicinity of the interface. These exciting findings suggest that the SLG/CFGG heterostructure possesses distinctive advantages over other reported graphene/ferromagnet heterostructures, for realizing effective transport of highly spin-polarized electrons in graphene-based vertical SV and other advanced spintronic devices.  相似文献   

18.
Conley H  Lavrik NV  Prasai D  Bolotin KI 《Nano letters》2011,11(11):4748-4752
The remarkable mechanical properties of graphene, the thinnest, lightest, and strongest material in existence, are desirable in applications ranging from composite materials to sensors and actuators. Here, we demonstrate that these mechanical properties are strongly affected by the interaction with the substrate onto which graphene is deposited. By measuring the temperature-dependent deflection of graphene/substrate "bimetallic" cantilevers we determine strain, thermal expansion coefficient, and the adhesion force acting on graphene films attached to a substrate. Graphene deposited on silicon nitride (SiN(x)) is under much larger strain, ε(g) ~ 1.5 × 10(-2), compared to graphene on gold (Au), ε(g) < 10(-3). The thermal expansion coefficient α(g) of graphene attached to SiN(x) is found to be negative, in the range from (- 5... - 1) × 10(-6)K(-1) and smaller in magnitude than α(g) of suspended graphene. We also estimate the interfacial shear strength of the graphene/SiN(x) interface to be ~1 GPa at room temperature.  相似文献   

19.
Here we discuss the use in solar cells of graphene grown by chemical vapor deposition (CVD) and of plasmonic gold nanoparticles (Au NPs) deposited by sputtering. The Au NPs have been coupled with a-Si heterojunction solar cells, with an organic active layer used in organic photovoltaics, and with graphene. Extensive characterization of those three systems by the optical technique of spectroscopic ellipsometry, which is suitable to monitor and analyze the plasmon resonance of the Au NPs, by the microstructural technique of Raman spectroscopy, which is suitable to analyze graphene properties and doping, and by atomic force microscopy has been carried out. Those techniques highlighted interactions between Au NPs and silicon, polymer and graphene, which lead to variation in the plasmon resonance of Au NPs and consequently in the characteristics of the Au NPs/Si, Au NPs/polymer and Au NPs/graphene hybrids. Specifically, we found that an optimal size and density of Au NPs are able to enhance the efficiency of c-Si/a-Si heterojunction solar cells and that exceeding with Au NPs size and density causes device shortcut because of interface interdiffusion between silicon and gold. To discuss organic photovoltaics, Au NPs have been combined with an electro-donating conjugated polymer, the poly[1,4bis(2-thienyl)-2,5-bis-(2-ethyl-hexyloxyphenylenes)]. We found that there is a strong correlation between the thickness and morphology of the organic active layer, which affects the energy and amplitude of the Au NPs plasmon resonance. Finally, Au NPs have been deposited on graphene. We found that Au NPs show the plasmon resonance in the region where graphene is transparent and also yield p-type doping of graphene decreasing its sheet resistance.  相似文献   

20.
Bilayer graphene (BLG) comprises a 2D nanospace sandwiched by two parallel graphene sheets that can be used to intercalate molecules or ions for attaining novel functionalities. However, intercalation is mostly demonstrated with small, exfoliated graphene flakes. This study demonstrates intercalation of molybdenum chloride (MoCl5) into a large‐area, uniform BLG sheet, which is grown by chemical vapor deposition (CVD). This study reveals that the degree of MoCl5 intercalation strongly depends on the stacking order of the graphene; twist‐stacked graphene shows a much higher degree of intercalation than AB‐stacked. Density functional theory calculations suggest that weak interlayer coupling in the twist‐stacked graphene contributes to the effective intercalation. By selectively synthesizing twist‐rich BLG films through control of the CVD conditions, low sheet resistance (83 Ω ??1) is realized after MoCl5 intercalation, while maintaining high optical transmittance (≈95%). The low sheet resistance state is relatively stable in air for more than three months. Furthermore, the intercalated BLG film is applied to organic solar cells, realizing a high power conversion efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号