首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In this study,the microstructure and tensile properties of selective laser melted AlSilOMg at elevated temperature were investigated with focus on the interfacial region.In-situ SEM and in-situ EBSD analysis were proposed to characterize the microstructural evolution with temperature.The as-fabricated AlSilOMg sample presents high tensile strength with the ultimate tensile strength(UTS)of~450 MPa and yield strength(YS)of~300 MPa,which results from the mixed strengthening mechanism among grain boundary,solid solution,dislocation and Orowan looping mechanism.When holding at the temperature below 200℃for 30 min,the micro structure presents little change,and only a slight decrement of yield strength appears due to the relief of the residual stress.However,when the holding temperature further increases to 300℃and 400℃,the coarsening and precipitation of Si particles inα-Al matrix occur obviously,which leads to an obvious decrease of solid solution strength.At the same time,matrix softening and the weakness of dislocation strengthening also play important roles.When the holding temperature reaches to 400℃,the yield strength decreases significantly to about 25 MPa which is very similar to the as-cast Al alloy.This might be concluded that the YS is dominated by the matrix materials.Because the softening mechanism counteracts work hardening,the extremely high elongation occurs.  相似文献   

2.
The single-phase face-centered cubic (fcc)-structured Fes0Mn27Ni10Cr1 3 high entropy alloy (HEA) exhibits good ductility but low strength,which presents a challenge.By Mo-alloying and thermomechanical treatments,we have designed the (Fes0Mn27Ni10Cr13)100-xMOx (x=0-6 at.%) alloy series with a wide range of mechanical properties.The careful control of secondary phases introduced in the cold-rolled and annealed (Fe50Mn27Ni10Cr13)Mo2 sample resulted in an enhanced tensile strength from 250MPa to 665 MPa,still having ~25 % ductility.TEM investigations of this alloy revealed the presence of deformation twins,dislocation cells,and ordered bcc nano-particles embedded in the ductile fcc matrix post-deformation.The observed deformation structures are an indication of successful cooperation between deformation twinning and precipitation strengthening in enhancing the tensile strength at maintained ductility compared to its cast counterpart.This work provides insight into the tunability of the mechanical properties of non-equiatomic HEAs via alloying and thermomechanical processing.  相似文献   

3.
Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-offdilemma.In this work,we combined a novel alloy design prin-ciple,i.e.harvesting pronounced solid solution hardening (SSH) based on the misfit volumes engineering,and simultaneously,architecting the ductile matrix based on the valence electron concentrations (VEC)criterion,to fulfill an excellent strength-ductility synergy for the newly emerging high/medium-entropy alloys (HEAs/MEAs).Based on this strategy,Al/Ta co-doping within NiCoCr MEA leads to an efficient synthetic approach,that is minor Al/Ta co-doping not only renders significantly enhanced strength with notable SSH effect and ultrahigh strain-hardening capability,but also sharply refines grains and induces abnormal twinning behaviors of (NiCoCr)92Al6Ta2 MEA.Compared with the partially twinned NiCoCr MEA,the yield strength (σy) and ultimate tensile strength (σUTS) of fully twinned Al/Ta-containing MEA were increased by ~102 % to ~600 MPa and ~35 % to ~ 1000 MPa,respectively,along with good ductility beyond 50 %.Different from the NiCoCr MEA with deformation twins (DTs)/stacking faults (SFs) domi-nated plasticity,the extraordinary strain-hardening capability of the solute-hardened (NiCoCr)92Al6Ta2 MEA,deactivated deformation twinning,originates from the high density of dislocation walls,micro-bands and abundance of SFs.The abnormal twinning behaviors,i.e.,prevalence of annealing twins (ATs)but absence of DTs in (NiCoCr)92Al6Ta2 MEA,are explained in terms of the relaxation of grain boundaries(for ATs) and the twinning mechanism transition (for DTs),respectively.  相似文献   

4.
采用中频炉冶炼制备不同Nb含量的微合金低碳铸钢,用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、液压万能强度试验机、半自动冲击试验机等手段研究了Nb微合金化对低碳铸钢显微组织、强度和冲击韧性的影响.结果表明,添加合适的微合金元素Nb可以使低碳铸钢的晶粒尺寸减小20.8%~34.6%,同时促进细小NbC析出相的形成,能有效提高低碳铸钢的强度和冲击韧性,晶粒细化和析出强化为其主要的强韧化机制.其中,含Nb量为0.044%的微合金铸钢屈服强度为350 MPa,抗拉强度为520 MPa,室温冲击功为119.7 J.与普通低碳铸钢相比,其塑性基本保持不变,但屈服强度、抗拉强度和室温冲击功分别提高了20.7%、7.2%和25.6%.  相似文献   

5.
An investigation was conducted on the structures and properties of aluminum-based alloys 7050 and 2224 with submicrocrystalline grains produced by severe plastic deformation through equal-channel angular pressing (ECA pressing). Special attention was paid to how the heat treatments before or after ECA pressing affected the structures and properties of alloys 7050 and 2224. The results showed that the ultimate tensile strength (UTS) of alloy 7050 reached 677 MPa, with elongation to failure of 15%, while the UTS of alloy 2224 reached 618 MPa, with elongation to failure of 12%. The forming of finer grains after ECA pressing resulted from cutting off shearing bands directly and from recrystallization at certain strain and annealing regimes. In this paper, three strengthening mechanisms were considered: grain refinement strengthening, high dislocation strengthening, and more homogenous and finer precipitations than the conventional T6-treated alloy.  相似文献   

6.
采用湿混法将石墨烯纳米片分散到高温合金粉末中,并采用热等静压+热挤压+等温锻造+热处理的方法制备出FGH96镍基粉末高温合金。结果表明:石墨烯纳米片在高温合金中分散均匀,初步发现在后续的热工艺过程中并未发生变性;添加0.1%(质量分数)的石墨烯后,室温抗拉强度和屈服强度分别提高了58MPa和43MPa,塑性从21.0%提高到37.3%;650℃条件下抗拉强度和屈服强度分别提高了58MPa和28MPa,塑性从18.5%提高到26.5%。此外对石墨烯增强FGH96镍基高温合金力学性能的作用机制也进行了进一步分析。  相似文献   

7.
采用拉伸性能、显微硬度测试及OM、SEM、TEM等实验方法研究了正火工艺对冷轧态低合金低温钢板组织演变和拉伸性能的影响。结果表明,热处理温度为700℃时,冷轧试样仅处于回复阶段,铁素体基体内为严重的位错缠结组态和位错网格结构;正火温度升高至750℃和800℃时,冷轧组织再结晶及相变过程同时发生,以M/A小岛为特征的粒状组织出现;860℃完全正火组织为等轴铁素体和弥散珠光体,位错呈稀疏的位错墙组态。23%压下率冷轧试样经860℃正火后铁素体晶粒尺寸由10%压下率冷轧试样的12.0μm细化到10.2μm。正火温度为860℃时,冷轧试样达到最佳的强塑性配合,10%和23%压下率试样的强塑积分别为20 007 MPa%、17 850 MPa%。与700℃正火试样相比,860℃正火试样拉伸断口附近及颈缩区组织中微孔数量显著降低,拉伸变形能力改善。  相似文献   

8.
统计分析了28组采用TMCP工艺制造的高强度厚钢板-10℃止裂韧性K_(ca)与屈服强度R_(P0.2)、抗拉强度R_m、-40℃冲击功KV_2、-20℃和-40℃动态撕裂能DTE、零塑性转变温度T_(NDT)的相关性规律,结果表明,-10℃止裂韧性K_(ca)与心部抗拉强度R_m和侧面零塑性转变温度T_(NDT)的相关度较高,随着心部抗拉强度R_m的增高和侧面零塑性转变温度T_(NDT)的降低,-10℃止裂韧性K_(ca)增大;在此基础上建立了-10℃止裂韧性K_(ca)与心部抗拉强度R_m、侧面零塑性转变温度T_(NDT)和板厚t的相关性方程K_(ca)=13.358·R_m-90.530·T_(NDT)-7.324·t~(1.5)或K_(ca)=13.427·R_m-74.845·T_(NDT)-0.635·t~2。  相似文献   

9.
There is currently a gap in our understanding of mechanisms that contribute to high strength and high plasticity in high strength UFG ferritic steel with nano-size Fe3C carbides in situations that involve com-bination of various strain rates and high temperature.In this regard,we describe the mechanistic basis of obtaining high strength-high plasticity combination in an ultrafine-grained(UFG)(~500±30 nm)ferritic steel with nano-size carbides,which sustained large plastic deformation,exceeding 100%elon-gation at a temperature significantly below 0.5 of the absolute melting point(Tm).To address the missing gap in our knowledge,we conducted a series of experiments involving combination of strain rate and temperature effects in conjunction with electron microscopy and atom probe tomography(APT).Strain rate studies were carried out at strain rates in the range of 0.0017-0.17 s-1 and at different temperatures from 25℃to 600℃.Dynamic recrystallization occurred at 600℃,resulting in a significant decrease in yield and tensile strength.Nevertheless,the UFG ferritic steels had an advantage in tensile strength(σUTS)and elongation-to-failure(εf)at 600℃,especially at strain rate of 0.0017 s-1,with high σUTS of 510 MPa and excellent low temperature(<0.42Tm)superplasticity(εf=110%).These mechanical properties are significantly superior compared to similar type of steels at identical temperature.A mechanistic under-standing of mechanical behavior of UFG ferritic steels is presented by combining the effect of strain rate,temperature,and nano-size carbides.  相似文献   

10.
A novel Al-14.1 Mg-0.47 Si-0.31 Sc-0.17 Zr alloy was applied in the printing process of selective laser melting(SLM),and the corresponding microstructural feature,phase identification,tensile properties and corrosion behavior of the Al Mg Si Sc Zr alloy were studied in detail.As fabricated at 160 W and 200 mm/s,the Mg content of bulk sample decreased to 11.7 wt%due to the element vaporization at high energy density,and the density of this additively manufactured Al Mg Si Sc Zr alloy was 2.538 g/cm3,which is4.2%8.5%lighter than that of other SLM-processed Al alloys.After heat-treated(HT)at 325℃and 6 h,the microstructure was almost unchanged with an alternate distribution of fine equiaxed crystals and coarse columnar crystals.Nano-sized Al3(Sc,Zr)and Mg2Si phases precipitated dispersedly in the Al matrix,and the tensile strength increased from 487.6 MPa to 578.4 MPa for precipitation strengthening and fine grain strengthening.With a fine grain size of 2.53μm,an excellent corrosion resistance was obtained for the as-printed(AP)Al Mg Si Sc Zr alloy.While the corrosion resistance of HT sample decreased slightly for the formation of non-dense oxide layer and pitting corrosion induced by diffuse precipitation distribution.This SLM-printed Al Mg Si Sc Zr alloy with high specific strength,good thermal stability and excellent corrosion resistance has broad prospects for the aerospace and automotive applications.  相似文献   

11.
In the present work,selective laser melting (SLM) technology was utilized for manufacturing CX stainless steel samples under a series of laser parameters.The effect of laser linear energy density on the microstructure characteristics,phase distribution,crystallographic orientation and mechanical properties of these CX stainless steel samples were investigated theoretically and experimentally via scanning electron microscope (SEM),X-ray diffraction (XRD),electron backscatter diffraction (EBSD) and transmission electron microscope (TEM).Based on the systematic study,the SLM CX stainless steel sample with best surface roughness (Ra =4.05 ± 1.8 μm) and relative density (Rd =99.72 %±0.22 %) under the optimal linear density (η=245 J/m) can be obtained.SLM CX stainless steel was primarily constituted by a large number of fine martensite (α'phase) structures (i.e.,cell structures,cellular dendrites and blocky grains) and a small quantity of austenite (γ phase) structures.The preferred crystallographic orientation (i.e.,<111 > direction) can be determined in the XZ plane of the SLM CX sample.Furthermore,under the optimal linear energy density,the good combinations with the highest ultimate tensile strength (UTS =1068.0 %±5.9 %) and the best total elongation (TE =15.70 %±0.26 %) of the SLM CX sample can be attained.Dislocation strengthening dominates the strengthening mechanism of the SLM CX sample in as-built state.  相似文献   

12.
对铝黄铜进行静磁场条件下不同时间的深冷处理,并与初始试样和同时间单独深冷试样进行对比分析,结果表明静磁场能够进一步提高铝黄铜的强韧性。在T=24h时,MDCT试样的强韧性最好,其抗拉强度为602.5 MPa,延伸率为7.2%,较初始样分别提高了6.4%和53.2%,较DCT24试样分别提高3.1%和28.6%。分析原因在于从深冷回复到室温过程中铝黄铜发生了回复再结晶,起到了细晶强化作用;同时基于磁致塑性效应,位错运动灵活性增加,有助于提高延伸率和塑性变形能力。另外,静磁场在深冷过程中起到抑制铝黄铜α→β相转化和促进γ相转变的作用,使得MDCT试样平均晶粒尺寸较DCT试样大。  相似文献   

13.
High-entropy alloys(HEAs)have attracted great research interest owing to their good combination of high strength and ductility at both room and cryogenic temperatures.However,expensive raw mate-rials are always added to overcome the strength-ductility trade-off at low temperatures,leading to an increased production cost for the cryogenically used alloys.In this work,a series of nitrogen-doped FeMnCoCr HEAs have been processed by homogenization annealing,cold rolling and recrystallization annealing followed by water quenching.The microstructural evolution and mechanical properties of the alloys are studied systematically.The Fe49Mn30Co10Cr10N1 alloy shows excellent mechanical properties at both 293 K and 77 K.Particularly,the yield and ultimate tensile strength of 1078 and 1630 MPa are achieved at the cryogenic temperature,respectively,while a satisfactory uniform elongation of 33.5%is maintained.The ultrahigh yield strength results from the microstructure refinement caused by the acti-vation of athermal martensitic transformation and mechanical twinning that occur in the elastic regime together with the increased lattice friction due to the cryogenic environment.In the plastic regime,the dynamic Hall-Petch effect caused by twinning,martensitic transformation,and reverse transformation together with the high barrier to dislocation motion jointly contribute to the ultrahigh tensile strength.Simultaneously,the transformation induced plasticity(TRIP)and the twinning induced plasticity(TWIP)effects jointly contribute to the ductility.The design strategy for attaining superior mechanical properties at low temperatures,i.e.by adjusting stacking fault energy in the interstitial metastable HEAs,guides the development of high-performance and low-cost alloys for cryogenic applications.  相似文献   

14.
Effect of the heat treatment, including solution treatment (ST) and aging treatment (AT), on the prior austenite grain (PAG) size, microstructure and mechanical properties of a precipitation hardening maraging stainless steel was investigated. The results indicate that the relations between PAG size and yield strength (σy) under both ST and AT conditions obey the Hall-Petch relationship. Furthermore, after ST at 1050℃for 1 h cryogenic treated (CT) at -70℃ for 8 h AT at 535℃ for 4 h, the tested steel showed its ultimate tensile strength (σb) and σy over 1900 MPa and 1750 MPa, respectively.  相似文献   

15.
An Mg–12Gd–3Y (wt%) alloy was prepared by conventional casting method using permanent steel mold. Then this alloy was subjected to hot processing, involving hot extrusion and free forging. Tensile strength at room temperature can be improved, with the highest ultimate tensile strength (UTS) value of 390.2 MPa achieved by hot extrusion in comparison to that of as-cast alloy. Temperature dependence of tensile strength is distinguishable for the as-extruded alloy, while the relative stability in UTS values of the alloy after being freely forged should be ascribed to the inter-crossing among deformation bands located at various orientations and the accommodation effect of twining lamellas resulting from forging process on plastic deformation during tensile test at elevated temperatures. Further annealing after hot processing can only have adequate influence on the tensile strength of as-forged alloy. For the alloy freely forged and annealed at 523 K for 4 h, the highest UTS (441.1 MPa) at room temperature is found, which should be mainly related to an evolution from the original as-forged microstructure with subgrains to a more stable combination of large and refined grains through dynamic recrystallization during free forging, and the stress at offset yield YS (384.3 MPa) is also comparable to that relatively high value of 396.9 MPa after solution treatment and isothermal aging of the as-cast alloy.  相似文献   

16.
In this study, Sn-free Zr–1.5Nb–O–P alloys were manufactured and their mechanical properties were characterized. The ultimate tensile strength (UTS) of cold rolled Zr–1.5Nb–O–P alloy with 160 ppm phosphorous (680 MPa) were close to that of a commercially available Zr–1Nb–1Sn–0.1Fe alloy (720 MPa), achieving a good mechanical strength without the addition of Sn, an effective solution strengthening element. The UTS of recrystallized Zr–1.5Nb–O–P alloy with 160 ppm phosphorous (533 MPa) was far greater than that of a commercially available Zr–1Nb–O (323 MPa) because of the strengthening due to higher Nb and oxygen content combined with phosphorous strengthening. The activation volumes for the cold rolled Zr–1.5Nb–P alloys were not much different from those of annealed Zr–1.5Nb–P alloys despite the higher dislocation density in the cold rolled alloys. Insensitivity of the activation volume to the dislocation density and the decrease of the activation volume with the addition of phosphorous support the suggestion linking the activation volume with the activated bulge of dislocations limited by segregation of oxygen and phosphorous atoms.  相似文献   

17.
用光学显微镜、扫描电镜、透射电镜和EBSD等方法研究了X100管线钢热连轧钢带的微观组织、析出物、晶粒尺寸等对X100管线钢强韧性的影响。结果表明,通过合理的成分设计和TMCP工艺得到的X100管线钢的平均有效晶粒尺寸约为2.38μm,晶内含有大量位错和亚结构;显微组织由粒状贝氏体、板条贝氏体和M/A岛组成,组织中粒状贝氏体含量较多,板条贝氏体含量较少,M/A岛尺寸较小,弥散分布;细小的第二相能有效钉扎位错的移动,产生沉淀强化效果;实验钢的抗拉强度高于970 MPa,屈服强度高于800 MPa,-40℃以上的Charpy冲击功大于250 J,韧脆转变温度在-40℃与-60℃之间。  相似文献   

18.
通过力学性能测试以及OM、SEM和TEM的组织观察,研究了锻造热处理工艺对Al-7Si-1.6Cu合金组织与力学性能的影响。结果表明,合金经过均匀化(500℃,8h)、锻造(锻造温度380~450℃,应变速率60~90s-1,道次压缩比10%~20%)、热处理(固溶480℃,2h,70℃,水冷;时效180℃,6h)之后,较铸态相比硬度提高18%、抗拉强度提高了52%、延伸率提高了54.5%。多向锻造过程中共晶Si相发生碎断与球化,时效过程中析出的纳米级第二相对合金起强化作用。开创性地从位错密度方向解释锻造过程强度提高的原因,通过Zener-Hollomon参数来说明锻造过程中流变应力与变形速率和变形温度之间的关系。  相似文献   

19.
This paper reports a synergistic design of high-performance BCC high-entropy alloy based on the com-bined consideration of the principles of intrinsic ductility of elements,maximum atomic size difference for solid solution strengthening and the valence electron concentration criterion for ductility.The single-phase BCC HfNbTaTiV alloy thus designed exhibited a high compressive yield strength of 1350 MPa and a high compressive ductility of >45 % at the room temperature.This represents a 50 % increase in yield strength relative to a HfNbTaTiZr alloy.This is attributed to the maximized solid solution strengthening effect caused by lattice distortion,which is estimated to be 1094 MPa.The alloy was also able to retain 53 % of its yield strength and 77 % of its ductility at 700 ℃.These properties are superior to those of most refractory BCC high-entropy alloys reported in the literature.  相似文献   

20.
在不同温度对Fe47Mn30Co10Cr10B3间隙高熵合金进行不同的形变和退火处理,使用电子背散射衍射和电子通道衬度像等手段对样品进行表征,研究了形变和退火对其微观组织结构演变的影响。结果表明,在小应变量条件下,随着形变温度的降低,主导的形变机制从位错滑移转变为相变诱导塑性;在室温形变条件下,随着应变量的增大,主导的形变机制由位错滑移转变为相变诱导塑性。对大应变量的样品退火,随着退火温度的提高,微观组织从形变态(600℃-5 min)、部分再结晶态(800℃-5 min)到完全再结晶态(1000℃-5 min)的演变。在1000℃退火条件下,随着退火时间的延长,微观组织由部分再结晶态(1 min)演变到完全再结晶态(5 min和15 min),且相组成由γ单相演变为γ+ε双相。退火不能改变形变态中第二相颗粒沿着轧向的分布。拉伸实验结果表明合金的屈服强度为326 MPa,抗拉强度为801.9 MPa,延伸率为26.8%,实现了较好的强韧化性能且其断裂机制为韧性断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号