首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
Water-vapor absorption features near 7117, 7185, and 7462 cm(-1) were probed at pressures to 65 atm (1 atm = 760 Torr) and temperatures to 1800 K in shock-heated mixtures of H(2)O in N(2) and Ar with a diode-laser source. Calculated absorbances based on Voigt line shapes and measured line parameters were in good agreement, within 10%, with measured absorbances at 7185.4 and 7117.4 cm(-1). We obtained temperature-dependent N(2) and Ar shift parameters for H(2)O absorption features by shifting the calculated spectra to match the recorded absorption scan. Absorbance simulations based on line parameters from HITRAN and HITEMP were found to be similar over the range of temperatures 600-1800 K and were within 25% of the measurements. The combined use of Toth's [Appl. Opt. 36, 4851 (1994)] line positions and strengths and HITRAN broadening parameters resulted in calculated absorption coefficients that were within 15% of the measurements at all three probed wavelengths.  相似文献   

2.
Characteristic peculiarities of the formation of the photoacoustic-detector signal from excitation of absorbing gas molecules by a short laser pulse (τ(p) ? τ(vt)) that allows for the natural oscillations of the microphone membrane are considered. A technique for τ(vt) measurement is proposed on the strength of the finding that the signal form is determined by the microphone membrane oscillation under low pressure (P ≤ 10 Torr). The results of measurement of the τ(vt) of the vibrational state ν(1) + 3ν(3) in H(2)O for the collisions H(2)O-(2)O and H(2)O-air are presented.  相似文献   

3.
An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.  相似文献   

4.
We reproduced the chemical-physical conditions of fumarolic emission at Phlaegrean Fields, Pozzuoli, Italy, and we measured the CO(2) and H(2)O concentrations using an absorption spectrometer based on two distributed feedback laser diodes at wavelengths of 1.578 and 1.393 mum. We discuss the accuracy levels of the different methods used. Furthermore, we measured the broadening coefficients for H(2)O (self-broadening, 28.2 +/- 0.6 MHz/Torr; CO(2) broadening, 6.0 +/- 0.4 MHz/Torr) and CO(2) (self-broadening, 3.2 +/- 0.1 MHz/Torr; H(2)O broadening, 4.0 +/- 0.1 MHz/Torr). Using the present data, we evaluated a minimum detectable variation of 9% for H(2)O and 1% for CO(2).  相似文献   

5.
We have investigated the equation of state of argon at elevated temperatures and pressures using a new shock tube method. Temperatures in the range of 1280 to 1830 K, and pressures from 6 to 50 MPa were generated behind reflected shock waves in test gas mixtures of argon with trace amounts of CO and H2 added. Density was determined from reflected shock pressure and incident shock speed measurements using the shock-jump relations. Temperature was determined from the modeling of the 4.7 sum infrared emission of the fundamental vibrational band of thermally-equilibrated CO. The experimentally determined argon P-p-T data points are in good agreement with the static-cell data of LeCocq and an extrapolation of the equation of state of Stewart and Jacobsen.  相似文献   

6.
A new method for the dissociation of large ions formed by electrospray ionization is demonstrated. Ions trapped in a Fourier transform mass spectrometer at pressures below 10(-)(8) Torr are dissociated by elevating the vacuum chamber to temperatures up to 215 °C. Rate constants for dissociation are measured and found to be independent of pressure below 10(-)(7) Torr. This indicates that the ions are activated by absorption of blackbody radiation emitted from the chamber walls. Dissociation efficiencies as high as 100% are obtained. There is no apparent mass limit to this method; ions as large as ubiquitin (8.6 kDa) are readily dissociated. Thermally stable ions, such as melittin 3+ (2.8 kDa), did not dissociate at temperatures up to 200 °C. This method is highly selective for low-energy fragmentation, from which limited sequence information can be obtained. From the temperature dependence of the dissociation rate constants, Arrhenius activation energies in the low-pressure limit are obtained. The lowest energy dissociation processes for the singly and doubly protonated ions of bradykinin are loss of NH(3) and formation of the b(2)/y(7) complementary pair, with activation energies of 1.3 and 0.8 eV, respectively. No loss of NH(3) is observed for the doubly protonated ion; some loss of H(2)O occurs. These results show that charge-charge interactions not only lower the activation energy for dissociation but also can dramatically change the fragmentation, most likely through changes in the gas-phase conformation of the ion. Dissociation of ubiquitin ions produces fragmentation similar to that obtained by IRMPD and SORI-CAD. Higher charge state ions dissociate to produce y and b ions; the primary fragmentation process for low charge state ions is loss of H(2)O.  相似文献   

7.
The adoption of Ac2O/HNO3 mixtures for the nitration of organics or the preparation of nitric esters is not free from some risks of explosion. The behaviour of these mixtures at varying Ac2O/HNO3 molar ratios is studied by means of adiabatic and scanning calorimetry. A simplified kinetic model, based on two lumped reactions (one of which leads to the formation of tetranitromethane) is developed to simulate the thermal decomposition of the investigated system under adiabatic conditions. The use of this model allows satisfactory prediction of the temperature profiles in the reactor whereas calculated pressures are generally overestimated due to some model inadequacies to account for the absorption of gaseous decomposition products into the reacting solution.  相似文献   

8.
The explosive properties of mixtures of aqueous hydrogen peroxide (H(2)O(2)) and different alcohols (R-OH) like 2-propanol (2-PropOH), 2-methyl-2-propanol (TBA), 2-methyl-2-butanol (TAA) and 2-methyl-2-pentanol (THA) were investigated. Among others, the potential hazard of such mixtures may be characterized by their ability to react by different mechanisms of an explosion in the condensed phase, e.g. the thermal explosion or the detonation. Accordingly, the mixtures were experimentally investigated either by heating them up under confinement in different autoclaves or by exposing them to a shock wave impact applying the steel tube test. The results are discussed and compared to literature data.  相似文献   

9.
The presence of H2O and CO2 in enhanced-fluidity liquids changes the pH in these mixtures due to the formation of carbonic acid. The acid-base equilibria in enhanced-fluidity liquids will also be affected by the reduction in the dielectric constant with the addition of CO2. The pH of enhanced-fluidity liquid mixtures at room temperature was determined from the UV/visible absorption spectra of several pH indicators. pH values of methanol/H2O/CO2 mixtures with CO2 proportions as high as 19.2 mol% are reported. The effect of adding buffer to methanol/H2O/CO2 mixtures on pH was also studied. It was also shown that pressure variation did not significantly influence the pH of enhanced-fluidity liquids.  相似文献   

10.
Zhu Z  Tao FF  Zheng F  Chang R  Li Y  Heinke L  Liu Z  Salmeron M  Somorjai GA 《Nano letters》2012,12(3):1491-1497
We studied the oxygen-induced restructuring process on a stepped Pt(557) single crystal surface using high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at O(2) pressures up to 1 Torr. HP-STM has revealed that nanometer-sized clusters are created on Pt(557) at 1 Torr of O(2) and at room temperature. These clusters are identified as surface Pt oxide by AP-XPS. The appearance of clusters is preceded by the formation of 1D chain structures at the step edges. By using a Pt(111) surface as a reference, it was found that the step sites are the nucleation centers for the formation of surface oxide clusters. These surface oxide clusters disappear and the stepped structure is restored on Pt(557) after evacuating O(2) to 10(-8) Torr. Changes in the surface oxide concentration in response to variations in the O(2) gas pressure are repeatable for several cycles. Our results that small clusters are initiated at step sites at high pressures demonstrate the importance of performing in situ characterization of stepped Pt catalysts under reaction conditions.  相似文献   

11.
A Nd:YAG laser was operated at 1064 nm and with 6-ns pulse duration to achieve optical breakdown in gaseous hydrogen at pressures of 150 and 810 Torr. Spatially and temporally resolved laser-induced emission spectra were measured early in the plasma decay. With hydrogen-alpha line profiles, electron number density values were determined along the laser beam plasma in the range 10(19) to 10(16) cc(-1).  相似文献   

12.
The presence of trace water vapor in process gases such as phosphine, used for compound semiconductor epitaxial growth, can negatively affect the optical and electrical properties of the final device. Therefore, sensitive H2O measurement techniques are required to monitor precursor purity and detect unacceptable contamination levels. A commercial cavity ring-down spectrometer that monitors an H2O absorption line at a wavelength of 1392.53 nm was investigated for service in high purity PH3. Spectral parameters such as the line shape of water vapor in the presence of PH3 as well as background features due to PH3 were measured at different pressures and incorporated into the data analysis software for accurate moisture readings. Test concentrations generated with a diffusion vialbased H2O source and dilution manifold were used to verify instrument accuracy, sensitivity, linearity, and response time. H2O readings at 13.2 kPa corresponded well to added concentrations (slope=0.990+/-0.01) and were linear in the tested range (0-52.7 nmol mol-1). The analyzer was sensitive to changes in H2O concentration of 1.3 nmol mol-1 based on 3sigma of the calibration curve intercept for a weighted linear fit. Local PH3 absorption features that could not be distinguished from the H2O line were present in the purified PH3 spectra and resulted in an additional systematic uncertainty of 9.0 nmol mol-1. Equilibration to changing H2O levels at a flow rate of 80 std cm3 min-1 PH3 occurred in 10-30 minutes. The results indicate that cavity ring-down spectroscopy (CRDS) at 1392.53 nm may be useful for applications such as on-line monitoring (and dry-down) of phosphine gas delivery lines or the quality control of cylinder sources.  相似文献   

13.
Hsu JC  Lin YH  Wang PW  Chen YY 《Applied optics》2012,51(9):1209-1215
Various zinc oxide films were deposited by ion-beam sputter deposition (IBSD) under different oxygen partial pressures (P(O2)) at room temperature. The as-deposited ZnO films fabricated at P(O2)>1.0×10(-4) Torr had poly-crystalline structures to absorb water on the surface at ambient condition. Simultaneously, the film surfaces were covered and smoothed by the surface layers formed with the water, hydroxyl (OH(-)) groups, and ZnO materials investigated by X-ray photoelectron spectroscopy (XPS). When the compositions of the surface layers were used in a multilayer fitting model of spectroscopic ellipsometry, the actual optical refractive index of the ZnO film deposited at P(O2)=1.2×10(-4) Torr was found to be about 1.9618 at λ=550 nm.  相似文献   

14.
Coherent population trapping (CPT) on 87Rb atoms in neon atmosphere has been studied in small-size glass absorption cells under conditions of pumping with narrow-band laser radiation at the D2 line of the main doublet. Parameters of the absorption signal have been measured in 3-mm-diameter cells at buffer gas (Ne) pressures varied within 200–400 Torr, cell temperatures within 65–120°C, and pumping radiation power densities within 30–400 μW/cm2. Optimum values of the buffer gas pressures, cell temperature, and pumping power are determined at which the short-term instability of the resonance line is at minimum. Orientational shifts of the CPT resonance signal in gas-filled cells and small-size cells with antirelaxation coating have been compared.  相似文献   

15.
Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (v1 + v3) transitions in the 7170-7185-cm(-1) region. Temperature was determined by the relative peak height ratios, and XH2O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/ argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (phi = 0.47 - 2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.  相似文献   

16.
用傅里叶红外光谱(FT-IR)测试分析了等离子体化学气相沉积法沉积的非晶SiOx∶H(0≤x≤2.0)薄膜中的Si—O—Si伸缩振动模与氧含量x的关系。Si—O—Si伸缩振动模在1000和1150cm  相似文献   

17.
存在衰减和真实气体效应的激波管激波速度的计算   总被引:2,自引:0,他引:2  
张京平 《计量学报》2000,21(1):45-50
用一般理论计算激波管参数,由于激波的衰减不可避免以及一定压力下的气体是非理想气体,故会有不小误差。本分别考虑了衰减和真实气体效应这两种对激波速度有影响的因素,对一种具有良好压力平台的激波管(驱动气体为H2,被驱动气体为CO2)中的激波速度进行了计算。首先采用考虑真实气体效应的理论,计算破膜后形成的初始激波速度;在激波沿管运行理论不能准确计算的阶段,采用由实验得出的激波衰减公式进行计算。计算结果与  相似文献   

18.
The interaction of N,N-dimethyl formamide (DMF) and N,N-dimethyl acetamide (DMA) with methanol in solution mixtures was studied using Fourier transform infrared-attenuated total reflection (FT-IR/ATR) spectroscopy. The concentration-dependent FT-IR/ATR spectra of DMF/methanol and DMA/methanol mixtures were recorded in the wavenumber range 4000-650 cm(-1) to investigate wavenumber shifts as a consequence of hydrogen bonding interactions. In combination with two-dimensional correlation spectroscopy (2D-COS), the positional fluctuations observed in the ν(C=O) and ν(O-H) regions of DMF/DMA and methanol, respectively, have been discussed in terms of changing populations of differently hydrogen-bonded and interacting species of the same and different component molecules.  相似文献   

19.
Using a piezometer of constant volume, we determined experimentally the P, ρ, and T properties and the phase equilibria for the binary water-n-hexane mixtures with 0.04, 0.05, 0.06, and 0.0673 mass fraction of H2O over the density range of 0.067–0.607 g/cm3, temperature range of 380–680 K, at pressures up to 60 MPa. The equilibrium lines of the liquid-liquid and liquid-gas transition have been determined. The three-phase line, the line of the azeotrope, and the lower branch of the critical line (all lines are joined at the upper finite critical point) have been plotted in the work.  相似文献   

20.
Measurements of the speed of sound in 42 different compositions of lean, medium, and rich natural-gas mixtures using a specialized high-pressure rupture tube have been conducted. The rupture tube is made of stainless steel (internal diameter = 38.1 mm and length = 42 m), and is instrumented with 13 high-frequency-response dynamic pressure transducers (Endevco) mounted very close to the rupture end and along the length of the tube to capture the pressure-time traces of the decompression wave. Tests were conducted for initial pressures ranging from 10 MPa to 37 MPa and a temperature range from ?25°C to+68°C. Gas mixture compositions were controlled by mixing conventional natural-gas mixtures from an adjacent gas pipeline with richer components of alkanes. Temperature control is achieved by a heat tracer along the tube with a set point at the desired gas temperature of the particular test. Uncertainty analysis indicated that the uncertainty in the experimentally determined speed of sound in the undisturbed gas mixture at the initial pressure and temperature is on the order of 0.306 %. The measured speeds of sound were compared to predictions by five equations of state, namely; the Benedict–Webb–Rubin–Starling (BWRS), AGA-8, Peng–Robinson (PR), Redlich–Kwong–Soave (RK–Soave), and Groupe Européen de Recherches Gaziéres (GERG-2004) equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号