首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 333 毫秒
1.
用球磨法制备具有非晶纳米晶结构的CeMg12+100wt%Ni+Ywt%TiF3(Y=0、3、5)电极合金,研究在球磨过程中加入不同含量的TiF3对合金的微观结构及电化学性能影响。主要从电化学放电容量、循环稳定性以及电化学动力学方面对制备的合金电化学性能进行探讨,并运用电化学PCT(压力–组成–温度)法从热力学角度进一步研究制备合金电化学性能变化的内在原因。结果表明:TiF3有助于增强球磨CeMg12+100wt%Ni+Ywt%TiF3(Y=0、3、5)储氢合金玻璃化形成能力,改善合金的电化学与动力学性能。另外,球磨过程中加入TiF3可以在一定程度上降低合金氢化物的热稳定性,有利于电化学释氢反应的进行。  相似文献   

2.
乔玉卿  赵敏寿  田冰  朱新坚  曹广益 《功能材料》2005,36(12):1875-1878
利用高能球磨方法制备纳米Mg2Ni储氢合金,用于高容量MH/Ni电池氢化物电极电化学性能研究。XRD和TEM测试结果表明,机械合金化方法制备Mg2Ni合金的历程为合金化——非晶化——纳米晶化,球磨时间直接影响Mg2Ni合金的结构。高能球磨20h可以制备非晶态Mg2Ni合金,比普通的机械合金化方法制备非晶态Mg2Ni合金的时间减少了约5倍之多;高能球磨30h可以制备纳米晶态Mg2Ni合金,粒径在10nm以下,有团聚现象。研究了Mg2Ni纳米氢化物电极在不同温度下的电化学性能,并从热力学角度就Mg2Ni纳米氢化物电极的某些高温电化学性能进行了解释和推测。实验结果表明:在30~70℃范围内,随着温度增加,氢化物电极的电化学容量逐渐增加,在70℃时电化学容量可达530.5mAh/g,约为30℃放电容量273.2mAh/g的2倍,Mg2Ni纳米氢化物电极具有较好的高倍率放电性能及大电流充放电性能,这表明机械合金化方法制备的Mg2Ni纳米氢化物电极具备电动车用大型MH/Ni电池负极材料的初步条件,但容量衰减严重。  相似文献   

3.
采用先熔炼Ti2Cu再添加Ni粉进行复合球磨的工艺方法探索制备了Ti—Cu—Ni基非晶合金,并研究了Ni粉添加量和球磨时间对合金相结构与电化学储氢性能的影响。结果表明,Ni粉添加量和球磨时间对合金的相结构与电化学性能有显著影响。其中,晶态Ti2Cu熔铸合金的放电容量仅为3.7mAh/g;将其球磨120h后的放电容量仍然只有14.4mAh/g;当添加Ni粉复合球磨120h形成非晶结构后,其放电容量得到明显提高,其中TizCu+50%Ni复合物的最大放电容量为82mAh/g,Ti2Cu+100%Ni复合物的最大放电容量达到168mAh/g。同时,随着球磨时间的增加,合金的非晶化程度也增强,放电容量随之提高。研究发现,添加Ni粉进行复合球磨有助于Ti2Cu的非晶化转变,同时Ni还起到良好的电催化作用,改善了合金的电化学性能。  相似文献   

4.
为了改善Mg2Ni型合金的电化学贮氢性能,用Co部分替代合金中的Ni.用快淬工艺制备了纳米晶和非晶Mg20Ni10-xCox(x=0、1、2、3、4)贮氢合金,分析了铸态及快淬态合金的微观结构,测试了合金的电化学贮氢性能.研究了Co替代Ni及快淬工艺对合金电化学贮氢性能的影响.结果表明,Co替代Ni不改变合金的Mg2Ni主相,但形成了第二相MgCo2.在快淬(x=0)合金中没有发现非晶相,但快淬(x=4)合金显示了纳米晶、非晶结构,表明Co替代Ni提高了Mg2Ni型舍金的非晶形成能力.熔体快淬显著的改善了合金的电化学贮氢性能,合金放电容量和电化学循环稳定性均随淬速的增加而增加.  相似文献   

5.
为了改善Mg-Ni合金的电化学性能,采用高能球磨技术合成了Mg-Zr-Ni储氢合金,通过改变球磨条件和添加合金元素Zr,利用XRD物相分析和电化学测量技术,研究了Mg-Ni合金的组织演变过程及其对电化学容量的影响.结果表明,高能球磨Mg-Ni和Mg-Zr-Ni合金都经历了非晶态向纳米晶态的转变过程,用少量Zr替代部分Mg后,促进了高能球磨Mg-Zr-Ni合金的非晶化和纳米晶化的过程.与非晶态Mg(Zr)Ni相比,纳米晶的Mg(Zr)Ni中氢更易放出,放电曲线主要呈现高电位放电特征,添加Zr后合金的放电容量有所下降.  相似文献   

6.
利用机械合金化法制备了La2Mg17+200%(质量分数)Ni复合储氢合金,并对不同球磨时间时合金的微观结构和电化学性能进行研究。结果发现,在球磨过程中Ni粉诱导了La-Mg-Ni非晶/纳米晶结构的形成。XRD和HRTEM结果共同表征了球磨80h时,合金中有Ni金属的存在,且XRD衍射峰强度较低,宽化严重,SAD为宽化的多环,表明形成非晶结构。电化学及其反应动力学测试结果发现,不同球磨时间的电化学反应的动力学控制机理是不同的。球磨60和80h后合金中不仅存在La-Mg-Ni非晶相,同时也有催化剂金属Ni,使合金的表面电荷转移反应电阻较小,氢在合金体相内的扩散系数D 和极限电流密度IL均最大,最终导致80h的放电容量为最大值948.3mAh/g。然而,当合金的球磨时间为100和120h时,合金粉化到纳米级,100h的电荷转移反应电阻Rct最大,合金表面电化学反应缓慢,且合金体相内的极限电流密度和氢扩散系数均最小,属于合金电解液表面间的电荷转移和氢向体相内扩散联合控制的过程,必然导致其放电比容量较小。  相似文献   

7.
李霞  赵栋梁  张羊换  许剑轶  胡锋  张胤 《功能材料》2013,(19):2898-2903
利用机械合金化法制备了La2Mg17+200%(质量分数)Ni复合储氢合金,并对不同球磨时间时合金的微观结构和电化学性能进行研究。结果发现,在球磨过程中Ni粉诱导了La-Mg-Ni非晶/纳米晶结构的形成。XRD和HRTEM结果共同表征了球磨80h时,合金中有Ni金属的存在,且XRD衍射峰强度较低,宽化严重,SAD为宽化的多环,表明形成非晶结构。电化学及其反应动力学测试结果发现,不同球磨时间的电化学反应的动力学控制机理是不同的。球磨60和80h后合金中不仅存在La-Mg-Ni非晶相,同时也有催化剂金属Ni,使合金的表面电荷转移反应电阻较小,氢在合金体相内的扩散系数D和极限电流密度I L均最大,最终导致80h的放电容量为最大值948.3mAh/g。然而,当合金的球磨时间为100和120h时,合金粉化到纳米级,100h的电荷转移反应电阻R ct最大,合金表面电化学反应缓慢,且合金体相内的极限电流密度和氢扩散系数均最小,属于合金电解液表面间的电荷转移和氢向体相内扩散联合控制的过程,必然导致其放电比容量较小。  相似文献   

8.
王仲民  周怀营  顾正飞  成刚  朱敏 《功能材料》2004,35(3):322-323,327
球磨Mg2Ni合金粉和Ni粉制得纳米Mg2Ni-Ni非晶合金。用XRD和SEM分析表征了球磨过程中的相和结构的变化。模拟电池测试结果表明,Mg2Ni/Ni复合粉的首次放电容量随球磨时间的延长有明显提高。当球磨150h形成了纳米Mg2Ni-Ni非晶合金,其放电容量和电极循环性能得到明显改善。  相似文献   

9.
在合金中添加Cu及Nd,用真空快淬技术制备纳米晶-非晶Mg2Ni型(Mg24Ni10Cu2)100-xNdx(x=0,5,10,15,20)合金,研究了淬速及Nd含量对合金结构及贮氢动力学性能的影响。XRD及TEM分析结果表明,铸态合金具有多相结构,包括主相Mg2Ni和第二相Nd5Mg41、Mg6Ni和Nd Ni。快淬无Nd合金具有完全的纳米晶结构,而含Nd合金则具有纳米晶-非晶结构,表明添加Nd提高了合金的非晶形成能力。贮氢动力学测试结果表明,快淬和添加Nd显著提高了合金的气态及电化学贮氢动力学。合金的高倍率放电能力(HRD)随着淬速和Nd含量的增加先增加而后减小,这主要归因于快淬及添加Nd显著提高了合金的氢扩散系数(D)和极限电流密度(IL),同时增大了电荷转移阻抗(Rct)。  相似文献   

10.
研究了球磨过程中的非晶化程度对不同成分Mg-Ni非晶合金电化学吸放氢性能的影响。研究结果表明,随着合金成分的不同,非晶化程度的影响不同。当Ni含量低于50%(原子分数)时,合金粉末中的非晶相所占比例越高,即非晶化程度越高时,合金电极的放电容量越大;而当Ni含量高于50%(原子分数)时,非晶合金中存在少量游离态的Ni相,可提高电极的放电量。分析认为这与Ni相的存在改善了合金的吸放氢动力学性能有关。  相似文献   

11.
球磨Mg0.97La0.03Ni合金的热稳定性及电性能研究   总被引:4,自引:1,他引:4  
蒙冕武  刘心宇  成均  周怀营 《功能材料》2004,35(1):55-57,60
采用XRD、DTA、SEM及电池性能测试仪等对球磨Mg0.97La0.03Ni合金的结构、形貌、活化性能、热稳定性、电化学稳定性及容量衰减机理等进行了详细的研究。结果表明:样品的热稳定性及循环稳定性随着球磨时间的延长而增加。经400r/min球磨50h的样品在第二次活化时即达到最大值450mAh/g.经25次循环充放电后.该样品的容量与其最大值相比下降了53%.容量衰减的主要原因有:在循环充放电过程中.非晶体逐渐分解生成Mg2NiH4和Ni等晶体相,同时在颗粒表面形成腐蚀产物Mg(OH)2等。  相似文献   

12.
李嵩  孙俊才  季世军 《功能材料》2005,36(12):1970-1973
为了提高合金的放电容量和高倍率放电性能,通过球磨Zr7Ni10合金对Zr0.5Ti0.5Mn0.7V0.2Co0.1Ni1.2合金表面进行改性,并研究了不同Zr,Ni10量和球磨时间对合金的相结构和电化学性能的影响。当采用8%(质量分数)Zr,Ni10进行球磨1h后,合金仍保持晶态,在50mAh/g电流条件下经过9次循环达到最大放电容量266mAh/g,比未球磨合金提高了约20%,而且在300mA/g电流条件下仍能保持最大放电容量的85%。随着球磨时间的增加,合金逐渐转为非晶态,合金的放电容量也迅速降低。非晶化合金在800℃进行热处理后大部分重新晶化,经过22次循环达到最大放电容量200mAh/g。  相似文献   

13.
Al-Fe-Ni ternary powder mixtures containing 25 at.%Fe-5 at.%Ni and 25 at.%Fe-10 at.%Ni were mechanically alloyed by a high-energy planetary ball mill. Structural evolution of these powders during milling was investigated by X-ray diffraction technique and transmission electron microscopy. Almost complete amorphous phase in Al70Fe25Ni5 system is observed at the early milling stage. The amorphous phase transforms into metallic compound Al5(Fe,Ni)2 and then the compound changes to ordered Al(Fe,Ni) phase. The last milling products in Al70Fe25Ni5 system are amorphous phase plus nanocrystalline of the disordered Al(Fe,Ni) phase changed from the ordered Al(Fe,Ni) phase. During milling of Al65Fe25Ni10 system, α-Al and α-Fe solid solutions formed at the early stage change to the ordered Al(Fe,Ni) compound and at last the ordered phase changes to the disordered Al(Fe,Ni) phase. Ten percent of Ni addition promotes retardation of the formation of the amorphous phase.  相似文献   

14.
The Mg–Ni metastable alloys (with amorphous or nanocrystalline structures) are promising candidates for anode application in nickel–metal hydride rechargeable batteries due to its large hydrogen absorbing capacity, low weight, availability, and relative low price. In spite of these interesting features, improvement on the cycle life performance must be achieved to allow its application in commercial products. In the present paper, the effect of mechanical coating of a Mg–50 at.% Ni alloy with Ni and Ni–5 at.% Al on the structure, powder morphology, and electrochemical properties is investigated. The coating additives, Mg–Ni alloy and resulting nanocomposites (i.e., Mg–Ni alloy + additive) were investigated by means of X-ray diffraction and scanning electron microscopy. The Mg–Ni alloy and nanocomposites were submitted to galvanostatic cycles of charge and discharge to evaluate their electrode performances. The mechanical coating with Ni and Ni–5% Al increased the maximum discharge capacity of the Mg–Ni alloy from of 221 to 257 and 273 mA h g−1, respectively. Improvement on the cycle life performance was also achieved by mechanical coating.  相似文献   

15.
利用机械合金化法制备了Mg76-xTi12Ni12Mnx(x=2,4,6,8)合金,并研究了Mn添加量对合金贮氢性能的影响。结果表明,在Mg76-xTi12Ni12Mnx(x=2,4,6,8)合金中合金相主要由Mg2Ni和Ti2Ni相组成,合金最大贮氢量分别为3.47%、3.32%、3.60%和3.11%(质量分数,下同),合金氢化物的分解热依次为-79.2kJ/mol、-78.0kJ/mol、-73.7kJ/mol和-73.6kJ/mol,添加Mn可降低合金氢化物的稳定性,改善其热力学性能,非晶化不利于提高合金的贮氢性能。  相似文献   

16.
The nanocrystalline and amorphous LaMg_(11)Ni + x wt% Ni(x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systematically investigated. The results indicate that the as-milled composites exhibit excellent hydrogen storage kinetic performances, and increasing Ni content significantly facilitates the improvement of the hydrogen storage kinetics properties of the composites. The gaseous and electrochemical hydrogen storage kinetics of the composites reaches a maximum value with the variation of milling time.Increasing Ni content and milling time both make the hydrogen desorption activation energy lower, which are responsible for the enhancement in the hydrogen storage kinetics properties of the composites. The diffusion coefficient of hydrogen atom and activation enthalpy of charge transfer on the surface of the as-milled composites were also calculated, which are considered to be the dominated factors for the electrochemical high rate discharge ability.  相似文献   

17.
Nickel metal hydride (Ni-MH) rechargeable batteries hold an important position in the new-energy vehicle market owing to their key technology advantages.Their negative electrode materials-hydrogen storage alloys (HSAs) are always on the spotlight and are the key to compete with the burgeoning Li-ion batteries.Here,for the first time we report a series of biphase supperlattice HSAs with a (La,Mg)2Ni7 matrix phase and anovel (La,Mg)7Ni23 secondary phase.The biphase alloys show discharge capacities of 402-413 mAh g-1 compared with 376-397 mAh g-1 of the other multi-or single-phase alloys.These val-ues are among the highest for superlattice HSAs.In addition,the alloy with 15.4 wt.% (La,Mg)7Ni23 phase exhibits good high rate dischargeability due to the proper compromise between the amount of crystal boundaries and equilibrium plateau voltage.The cycling stability of the biphase alloys is lower than that of the single-phase alloy but is till higher than the multiphase alloy.The novel superlattice biphase alloys with superior overall electrochemical properties are expected to inspire further design and development of HSAs as advanced electrode materials for power batteries.  相似文献   

18.
Abstract

An investigation is reported of phase equilibria in alloys of the Ni–Cr–AI–Mo system containing 60 and 50 at. –%Ni annealed at 1523 K. The experimental methods used mainly were electron microscopy, electron probe microanalysis, and X–ray diffraction. Four quaternary alloys were used, with compositions (at.–%) lying on a line between Ni60Al40 and Ni60Cr20Mo20,and one alloy containing 50Ni–28Cr–10AI-12Mo.The composition range was chosen to include the P–and σ –phases based on the Ni–Cr–Mo system. The phases involved in equilibria at 1523 K in the 60 at. –%Ni alloy series were γ (Ni–base solid solution), β (based on NiAI), Mo–base solid solution, and P; the 50 at. –%Ni alloy contained γ, β and σ. Partial isothermal sections of the quaternary system at 60 and 50 at. –%Ni have been determined. Eutectics containing either γ + P or γ + β + P were present

in the as–solidified 60 at. –%Ni alloys, while a γ + β + σ eutectic was present in the 50 at–%Ni alloy; some compositional data for eutectic phases were obtained by analytical transmission electron microscopy. High hardness values (from ~ 500 to 670 HV) were obtained in the as–solidified alloys.

MST/265  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号