首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A cryogenic loop heat pipe (CLHP) has been developed for future aerospace applications at the TIPC (Technical Institute of Physics and Chemistry). The device has been tested in different situations with constant heat sink temperature of about 78 K. The effects of the reservoir volume and the pore size of the primary wick on the performance of CLHP were investigated. With a wick pore size of 2 μm, the CLHP can transfer a heat load of 26 W under horizontal orientation no matter what size of the reservoir volume being used. On the contrary, when the pore size was large (10 μm), the heat transfer capability of the CLHP can be up to 26 W only when a smaller reservoir (60 cc) was used, and its ability to operate against gravity was greatly weakened. Moreover, when the working fluid was oxygen instead of nitrogen, the heat transfer capability can be up to 50 W under horizontal orientation with the other experimental conditions remaining the same.  相似文献   

2.
This paper discusses a prototype of cryogenic loop heat pipe (CLHP) working around 80 K with nitrogen as the coolant, developed at CEA-SBT in collaboration with the CAS/TIPC and tested in laboratory conditions. In addition to the main loop it features a pressure reduction reservoir and a secondary circuit which allow cooling down the loop from the room temperature conditions to the nitrogen liquid temperature and transferring the evaporator heat leaks and radiation heat loads towards the condenser. The general design, the instrumentation and the experimental results of the thermal response of the CLHP are presented, analyzed and discussed both in the transient phase of cooling from room temperature (i) and in stationary conditions (ii). During phase (i), even in a severe radiation environment, the secondary circuit helped to condense the fluid and was very efficient to chill the primary evaporator. During phase (ii), we studied the effects of transferred power, filling pressure and radiation heat load for two basic configurations of cold reservoir of the secondary circuit. A maximum cold power of 19 W with a corresponding limited temperature difference of 5 K was achieved across a 0.5 m distance. We evidenced the importance of the filling pressure to optimize the thermal response. A small heating power (0.1 W) applied on the shunted cold reservoir allows to maintain a constant subcooling (1 K). The CLHP behaves as a capillary pumped loop (CPL) in such a configuration, with the cold reservoir being the compensation chamber of the thermal link. The radiation heat loads may affect significantly the thermal response of the system due to boiling process of liquid and large mass transfer towards the pressure reduction reservoir.  相似文献   

3.
The thermal behaviour of a new two-phase secondary refrigerant has been analysed. The “stabilised ice slurry” is a suspension in a low viscosity oil of ultraporous polymeric particles filled with water. In order to determine the convective heat transfer coefficient of this secondary refrigerant with water–ice phase change, an experimental set-up was built. It allows determining the local heat transfer coefficients inside two heat exchangers, having rectangular sections (80 × 8 mm2) of 1 m length, by mean of fluxmeters located along the working section. The slurry is first cooled and frozen in one of the exchangers, then heated and melted in the other exchanger. The results obtained for laminar or transitional flows shows that the heat transfer coefficients of the ice slurry are obviously higher than the heat transfer coefficients obtained with the single-phase fluid (oil). Correlations giving the local and global Nusselt numbers, depending on the Graetz or Reynolds numbers and on the particle mass fraction, have been established.  相似文献   

4.
Outside (refrigerant) boiling coefficients for a combination of spray and drip boiling for a low pressure refrigerant have been obtained from overall heat transfer coefficients in a 1024 fins per meter tube bundle segment. The tubes were heated by water on the inside; liquid refrigerant was sprayed and/or dripped on the outside. Also, refrigerant vapor was supplied at the bottom of the bundle segment. This configuration simulates an actual flooded evaporator under spray boiling conditions. The dripping corresponds to liquid film falling from upper rows while the inlet vapor is equivalent to the vaporized refrigerant rising from lower tubes; the refrigerant vapor can influence heat transfer performance by the combined effects of gas convection and liquid shear on the tubes. For a nominal heat flux of 23,975 W/m2, a bundle average outside heat transfer coefficient of 8522 W/m2 °C, based on nominal tube outer diameter, was found at an average bundle vapor mass flux equal to 12.4 kg/s m2. The distributor plate below the bundle enhanced the heat transfer, especially at lower vapor mass fluxes, by providing a level of liquid hold-up just below the bottom tube row.  相似文献   

5.
An ammonia/water mixture can be used as an efficient working fluid in industrial-type heat recovery heat pumps and heat transformers. Several configurations of such systems are possible depending on the availability of the waste (thermal) and primary (thermal or electrical) energy sources. This article presents the configurations, the main thermodynamic and hydraulic parameters, and some design guidelines and operating experiences of a medium-temperature, ammonia/water-based compression/re-sorption heat recovery system for district domestic hot water production. In-field experiments have proven the advantages of the concept and its applicability limits in a particular economical environment, while hot water was produced at 55 °C with industrial cooling water at 36 °C as a waste heat source.  相似文献   

6.
This paper is the second part of our study on the advanced energy storage system using H2O–LiBr as working fluid. In the first part, the system working principle has been introduced, and the system dynamic models in the operation process have also been developed. Based on the previous research, this paper focuses on the numerical simulation to investigate the system dynamic characteristics and performances when it works to provide combined air-conditioning and hot water supplying for a hotel located near by Yangzi River in China. The system operation conditions were set as follows: the outdoor temperature was between 29 °C and 38 °C, the maximum air-conditioning load was 1450 kW, the total air-conditioning capacity was 19,890 kWh and the 50 °C hot water capacity for showering was 20 tons which needed heat about 721 kWh on a given day. Under these conditions, the system operation characteristics were simulated under the full- and partial-storage strategies. The simulation results predicted the dynamic characteristics and performances of the system, including the temperature and concentration of the working fluid, the mass and energy in the storage tanks, the compressor intake mass or volume flow rate, discharge pressure, compression ratio, power and consumption work, the heat loads of heat exchanger devices in the system and so on. The results also showed that the integrated coefficient of performances (COPint) of the system were 3.09 and 3.26, respectively, under the two storage strategies while the isentropic efficiency of water vapor compressor was 0.6. The simulation results are very helpful for understanding and evaluating the system as well as for system design, operation and control, and device design or selection in detail.  相似文献   

7.
Results of a room temperature magnetic refrigeration test bed and an analysis using a computational model are presented. A detailed demonstration of the four sequential processes in the transient magnetocaloric regeneration process of a magnetic material is presented. The temperature profile during the transient approach to steady state operation was measured in detail. A 5 °C evolution of the difference of temperature between the hot end and the cold end of the magnetocaloric bed due to regeneration is reported. A model is developed for the heat transfer and fluid mechanics of the four sequential processes in each cycle of thermal wave propagation in the regenerative bed combined with the magnetocaloric effect. The basic equations that can be used in simulation of magnetic refrigeration systems are derived and the design parameters are discussed.  相似文献   

8.
The objectives of this paper are to investigate the effect of heat transfer additive and surface roughness of micro-scale hatched tubes on the absorption performance and to provide a guideline for the absorber design. Two different micro-scale hatched tubes and a bare tube are tested to quantify the effect of the surface roughness on the absorption performance. The roughness of the micro-scale hatched tubes ranges 0.39–6.97 μm. The working fluid is H2O/LiBr solution with inlet concentration of 55, 58 and 61 wt.% of LiBr. Normal Octanol is used as the heat transfer additive with the concentration of 400 ppm. The absorber heat exchanger consists of 24 horizontal tubes in a column, liquid distributor at the liquid inlet and the liquid reservoir at the bottom of the absorber. The effect of heat transfer additive on the heat transfer rate is found to be more significant in the bare tube than that in the micro-scale hatched tubes. It is found that the absorption performance for the micro-hatched tube with heat transfer additive becomes up to 4.5 times higher than that for the bare tube without heat transfer additive. It is concluded that the heat transfer enhancement by the heat transfer additive is more significant than that by the micro-scale surface treatment.  相似文献   

9.
Development of an ejector cooling system with thermal pumping effect   总被引:1,自引:1,他引:1  
This paper presents a feasibility study of an ejector cooling system (ECS) that utilizes a multi-function generator (MFG) to eliminate the mechanical pump. The MFG serves as both a pump and a vapor generator. The MFG is designed based on the pressure equilibration between high and low pressures through heating and cooling process. In this design, an ECS that contains no moving components and is entirely powered by heat can be practicable. A prototype using refrigerant R141b as working fluid was constructed and tested in the present study. The experimental results showed that the system coefficient of performance (COPo) was 0.218 and the cooling capacity was 0.786 kW at generating temperature (TG) 90 °C, condensing temperature (TC) 32.4 °C and evaporating temperature (TE) 8.2 °C. While taking into account the extra heat needed for the MFG operation, the total coefficient of performance (COPt) is 0.185. It is shown that a continuous operation for the generation of cooling effect in an ECS with MFG can be achieved. This cooling machine can be very reliable since there is no moving part.  相似文献   

10.
This paper reports heat transfer results obtained during condensation of refrigerant propane inside a minichannel aluminium heat exchanger vertically mounted in an experimental setup simulating a water-to-water heat pump. The condenser was constructed of multiport minichannel aluminium tubes assembled as a shell-and-tube heat exchanger. Propane vapour entered the condenser tubes via the top end and exited sub-cooled from the bottom. Coolant water flowed upward on the shell-side. The heat transfer areas of the tube-side and the shell-side of the condenser were 0.941 m2 and 0.985 m2, respectively. The heat transfer rate between the two fluids was controlled by varying the evaporation temperature while the condensation temperature was fixed. The applied heat transfer rate was within 3900–9500 W for all tests. Experiments were performed at constant condensing temperatures of 30 °C, 40 °C and 50 °C, respectively. The cooling water flow rate was maintained at 11.90 l min−1 for all tests. De-superheating length, two-phase length, sub-cooling length, local heat transfer coefficients and average heat transfer coefficients of the condenser were calculated. The experimental heat transfer coefficients were compared with predictions from correlations found in the literature. The experimental heat transfer coefficients in the different regions were higher than those predicted by the available correlations.  相似文献   

11.
This article studies, experimentally and theoretically, the thermal performance of cold storage in thermal battery for air conditioning. Thermal battery utilizes the superior heat transfer characteristics of heat pipe and eliminates drawbacks found in the conventional thermal storage tank. Experimental investigations are first conducted to study the cold storage thermal performance in two experimental systems: the ratio of distance between heat pipes to outer diameter of heat pipe W/D=6 and 2. Different heat transfer mechanisms including nucleate boiling, geyser boiling and natural convection are identified in different experimental systems with various liquid fills. A theoretical model to determine the thermal characteristics of the thermal battery has also been developed. Comparisons of this theory with experimental data show good agreements in the nucleate boiling stage of cold storage process.  相似文献   

12.
Evaporative heat transfer and pressure drop of R410A in microchannels   总被引:5,自引:0,他引:5  
Convective boiling heat transfer coefficients and two-phase pressure drops of R410A are investigated in rectangular microchannels whose hydraulic diameters are 1.36 and 1.44 mm. The mass flux was varied from 200 to 400 kg/m2s, heat flux from 10 to 20 kW/m2, as the saturation temperatures were maintained at 0, 5 and 10 °C. A direct heating method was used to provide heat flux into the fluid. The boiling heat transfer coefficients of R410A in the microchannels were much different with those in single tubes, and the test conditions only slightly affected the heat transfer coefficients before dryout vapor quality. The present heat transfer correlation for microchannels, which was developed by introducing non-dimensional parameters of Bo, Wel, and Rel used in the existing heat transfer correlations for large diameter tubes, yielded satisfactory predictions of the present data with a mean deviation of 18%. The pressure drops of R410A in the microchannels showed very similar trends with those in large diameter tubes. The existing two-phase pressure drop correlations for R410A in microchannels satisfactorily predicted the present data.  相似文献   

13.
The development of an absorption based miniature heat pump system is motivated by the need for removal of increasing rates of heat from high performance electronic chips such as microprocessors. The goal of the present study is to keep the chip temperature near ambient temperature, while removing 100 W of heat load. Water/LiBr pair is used as the working fluid. A novel dual micro-channel array evaporator is adopted, which reduces both the mass flux through each micro-channel, as well as the channel length, thus reducing the pressure drop. Micro-channel arrays for the desorber and condenser are placed in intimate communication with each other using a hydrophobic membrane. This acts as a common interface between the desorber and the condenser to separate the water vapor from LiBr solution. The escaped water vapor is immediately cooled and condensed at the condenser side. For direct air cooling of condenser and absorber, offset strip fin arrays are used. The performance of the components and the entire system is numerically evaluated and discussed.  相似文献   

14.
CO2 flow condensation heat transfer coefficients and pressure drop are investigated for 0.89 mm microchannels at horizontal flow conditions. They were measured at saturation temperatures of −15 and −25 °C, mass fluxes from 200 to 800 kg m−2 s−1, and wall subcooling temperatures from 2 to 4 °C. Flow patterns for experimental conditions were predicted by two flow pattern maps, and it could be predicted that annular flow patterns could exist in most of flow conditions except low mass flux and low vapor quality conditions. Measured heat transfer coefficients increased with the increase of mass fluxes and vapor qualities, whereas they were almost independent of wall subcooling temperature changes. Several correlations could predict heat transfer coefficients within acceptable error range, and from this comparison, it could be inferred that the flow condensation mechanism in 0.89 mm channels should be similar to that in large tubes. CO2 two-phase pressure drop, measured in adiabatic conditions, increased with the increase of mass flux and vapor quality, and it decreased with the increase of saturation temperature. By comparing measured pressure drop with calculated values, it was shown that several correlations could predict the measured values relatively well.  相似文献   

15.
Experimental investigation on R134a vapour ejector refrigeration system   总被引:6,自引:1,他引:5  
The experimental investigation of the performance of a vapour ejector refrigeration system is described. The system uses R134a as working fluid and has a rated cooling capacity of 0.5 kW. The influence of generator, evaporator and condenser temperatures on the system performance is studied. This kind of system can be operated with low grade thermal energy such as solar energy, waste heat, etc. The operating conditions are chosen accordingly as, generator temperature between 338 K and 363 K, condenser temperature between 299 K and 310.5 K, and evaporator temperature between 275 K and 285.5 K. Six configurations of ejectors of different geometrical dimensions are selected for the parametric study. The performance of the refrigeration system at different operating temperatures is presented.  相似文献   

16.
The paper presents a new desiccant cooling cycle to be integrated in residential mechanical ventilation systems. The process shifts the air treatment completely to the return air side, so that the supply air can be cooled by a heat exchanger. Purely sensible cooling is an essential requirement for residential buildings with no maintenance guarantee for supply air humidifiers. As the cooling power is generated on the exhaust air side, the dehumidification process needs to be highly efficient to provide low supply air temperatures. Solid rotating desiccant wheels have been experimentally compared with liquid sorption systems using contact matrix absorbers and cross flow heat exchangers. The best dehumidification performance at no temperature increase was obtained in an evaporatively cooled heat exchanger with sprayed lithium chloride solution. Up to 7 g kg−1 dehumidification could be reached in an isothermal process, although the surface wetting of the first prototype was low. The process then provides inlet air conditions below 20 °C for the summer design conditions of 32 °C, 40% relative humidity. With air volume flow rates of 200 m3 h−1 the system can provide 886 W of cooling power.A theoretical model for both the contact absorber and the cross flow system has been developed and validated against experimental data for a wide range of operating conditions. A simulation study identified the optimisation potential of the system, if for example the surface wetting of the liquid desiccant can be improved.  相似文献   

17.
In this study, external condensation heat transfer coefficients (HTCs) are measured for nonazeotropic refrigerant mixtures (NARMs) of HFC32/HFC134a and HFC134a/HCFC123 on a low fin and Turbo-C tubes. All measurements are taken at the vapor temperature of 39 °C with the wall subcooling of 3–8 °C. Test results showed that condensation HTCs of NARMs on enhanced tubes were severely degraded from the ideal values showing up to 96% decrease. HTCs of the mixtures on Turbo-C tube were degraded more than those on low fin tube such that HTCs of the mixtures at the same composition were similar regardless of the tube. The mixture with larger gliding temperature differences (GTDs), HFC134a/HCFC123, showed a larger heat transfer reduction from the ideal values than the mixture with smaller GTDs, HFC32/HFC134a. Heat transfer enhancement ratios of the enhanced tubes with NARMs were almost 2 times lower than those with pure refrigerants and they decreased more as the GTDs of the mixtures increased.  相似文献   

18.
This paper presents the experimental tests on HFC-134a condensation inside a small brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature and vapour super-heating are investigated.A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 20 kg/m2 s. For refrigerant mass flux lower than 20 kg/m2 s, the saturated vapour heat transfer coefficients are not dependent on mass flux and are well predicted by the Nusselt [Nusselt, W., 1916. Die oberflachenkondensation des wasserdampfes. Z. Ver. Dt. Ing. 60, 541–546, 569–575] analysis for vertical surface. For refrigerant mass flux higher than 20 kg/m2 s, the saturated vapour heat transfer coefficients depend on mass flux and are well predicted by the Akers et al. [Akers, W.W., Deans, H.A., Crosser, O.K., 1959. Condensing heat transfer within horizontal tubes. Chem. Eng. Prog. Symp. Ser. 55, 171–176] equation. In the forced convection condensation region, the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8–10% higher than those of saturated vapour and are well predicted by the Webb [Webb, R.L., 1998. Convective condensation of superheated vapour. ASME J. Heat Transfer 120, 418–421] model. The heat transfer coefficients show weak sensitivity to saturation temperature. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow and therefore a quadratic dependence on the refrigerant mass flux.  相似文献   

19.
Heat transfer in the evaporator of an advanced two-phase thermosyphon loop   总被引:2,自引:1,他引:1  
As heat generation from electronic components increase and the limit of air-cooling is reached, the interest for using liquid cooling for high heat flux applications has risen. Thermosyphon cooling is an alternative liquid cooling technique, in which heat is transferred as heat of vaporization from evaporator to condenser with a relatively small temperature difference.The effect of fluid properties, the structure of wall surfaces, and the effect of system pressure was investigated and reported previously by the author. In this paper, the influence of heat flux, system pressure, mass flow rate, vapor fraction, diameter of evaporator channel and tubing distance between evaporator and condenser on the heat transfer coefficient of an advanced two-phase thermosyphon loop is reported. The tested evaporators were made from small blocks of copper with 7, 5, 4, 3 and 2 vertical channels with the diameters of 1.1, 1.5, 1.9, 2.5, and 3.5 mm, respectively and the length of 14.6 mm. Tests were done with isobutane at heat fluxes ranging between 28.3 and 311.5 kW/m2.  相似文献   

20.
This paper describes an analysis on the performances of a cascade refrigeration cycle operated with blends of carbon dioxide (CO2, or R744) and hydrofluorocarbons (HFC) as the low-temperature working fluid. The aim of this work was to study the possibility of using carbon dioxide mixtures in those applications where temperatures below CO2 triple point (216.58 K) are needed. The analysis was carried out by developing a software based on the Carnahan–Starling–De Santis (CSD) equation of state (EoS) using binary interaction parameters derived from our experimental data. The properties of the investigated blends (R744/R125, R744/R41, R744/R32, R744/R23) were used to simulate the behavior of a cascade cycle using ammonia (R717) as the high-temperature-circuit working fluid and operating at evaporating temperatures down to −70 °C. The use of a suction–liquid heat exchanger on the low-temperature side of the circuit was also investigated. Results show that the R744 blends are an attractive option for the low-temperature circuit of cascade systems operating at temperatures approaching 200 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号