首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stress‐related problems have not been given the same attention as the minimum compliance topological optimization problem in the literature. Continuum structural topological optimization with stress constraints is of wide engineering application prospect, in which there still are many problems to solve, such as the stress concentration, an equivalent approximate optimization model and etc. A new and effective topological optimization method of continuum structures with the stress constraints and the objective function being the structural volume has been presented in this paper. To solve the stress concentration issue, an approximate stress gradient evaluation for any element is introduced, and a total aggregation normalized stress gradient constraint is constructed for the optimized structure under the r?th load case. To obtain stable convergent series solutions and enhance the control on the stress level, two p‐norm global stress constraint functions with different indexes are adopted, and some weighting p‐norm global stress constraint functions are introduced for any load case. And an equivalent topological optimization model with reduced stress constraints is constructed,being incorporated with the rational approximation for material properties, an active constraint technique, a trust region scheme, and an effective local stress approach like the qp approach to resolve the stress singularity phenomenon. Hence, a set of stress quadratic explicit approximations are constructed, based on stress sensitivities and the method of moving asymptotes. A set of algorithm for the one level optimization problem with artificial variables and many possible non‐active design variables is proposed by adopting an inequality constrained nonlinear programming method with simple trust regions, based on the primal‐dual theory, in which the non‐smooth expressions of the design variable solutions are reformulated as smoothing functions of the Lagrange multipliers by using a novel smoothing function. Finally, a two‐level optimization design scheme with active constraint technique, i.e. varied constraint limits, is proposed to deal with the aggregation constraints that always are of loose constraint (non active constraint) features in the conventional structural optimization method. A novel structural topological optimization method with stress constraints and its algorithm are formed, and examples are provided to demonstrate that the proposed method is feasible and very effective. © 2016 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.  相似文献   

2.
采用逐点Lagrange乘子法求解巴西圆盘中心裂纹在压剪荷载作用下裂纹面可能发生的摩擦接触问题。为了避免传统的Lagrange乘子法中总刚度阵求逆的困难,将Lagrange乘子逐点转到局部坐标系下,采用Gauss-Seidel迭代法求解法向和切向乘子,同时注意在求解的过程中对切向乘子约束修正,待所有点乘子求解完成后再变换到整体坐标系下迭代求解位移。与传统接触算法相比,该算法无需对总刚度阵求逆,降低了求解规模,提高了计算效率。通过该方法计算了巴西圆盘中心裂纹两种典型情况下的应力强度因子,计算结果与文献比较,吻合良好。考虑不同荷载角和裂纹长度对位移,应力强度因子和接触区的影响,并对不同摩擦系数下应力强度因子的影响进行了分析。结果表明:忽略裂纹接触摩擦作用,应力强度因子可能被高估。  相似文献   

3.
A bidirectional evolutionary structural optimization algorithm is presented, which employs integer linear programming to compute optimal solutions to topology optimization problems with the objective of mass minimization. The objective and constraint functions are linearized using Taylor's first-order approximation, thereby allowing the method to handle all types of constraints without using Lagrange multipliers or sensitivity thresholds. A relaxation of the constraint targets is performed such that only small changes in topology are allowed during a single update, thus ensuring the existence of feasible solutions. A variety of problems are solved, demonstrating the ability of the method to easily handle a number of structural constraints, including compliance, stress, buckling, frequency, and displacement. This is followed by an example with multiple structural constraints and, finally, the method is demonstrated on a wing-box, showing that topology optimization for mass minimization of real-world structures can be considered using the proposed methodology.  相似文献   

4.
The global variable-fidelity modelling (GVFM) method presented in this article extends the original variable-complexity modelling (VCM) algorithm that uses a low-fidelity and scaling function to approximate a high-fidelity function for efficiently solving design-optimization problems. GVFM uses the design of experiments to sample values of high- and low-fidelity functions to explore global design space and to initialize a scaling function using the radial basis function (RBF) network. This approach makes it possible to remove high-fidelity-gradient evaluation from the process, which makes GVFM more efficient than VCM for high-dimensional design problems. The proposed algorithm converges with 65% fewer high-fidelity function calls for a one-dimensional problem than VCM and approximately 80% fewer for a two-dimensional numerical problem. The GVFM method is applied for the design optimization of transonic and subsonic aerofoils. Both aerofoil design problems show design improvement with a reasonable number of high- and low-fidelity function evaluations.  相似文献   

5.
A new approach to the optimal design of the die wall temperature profile in polymer extrusion processes is presented. In this approach, optimization of the design variables is conducted by a Response Surface Method (RSM) and the Sequential Quadratic Programming (SQP) algorithm. Design of experiment (DoE) needed for the construction of the response surface is used to evaluate the objective and the constraint functions on the basis of a finite element method (FEM). Two designs of experiments are used and the performances of the optimization results are compared with respect to efficiency and ability to obtain a global optimum. Typically, for extrusion die design, the objective function states that the average velocity across the die exit is uniform. Constraints are used to limit the pressure drop in the die. For this purpose, we optimize the wall temperature profile of a coat hanger die in a heterogeneous way, (i.e. the wall temperature may not be constant in the entire die). The melt temperature enables us to locally control the viscosity, which influences the flows in the various zones. The effect of the design variables in the objective and constraint functions is investigated using Taguchi method. The flow analysis results are then combined with an automatic optimization algorithm to provide a new profile of the die wall temperature distributions.  相似文献   

6.
This study proposes a method for solving mixed-integer constrained optimization problems using an evolutionary Lagrange method. In this approach, an augmented Lagrange function is used to transform the mixed-integer constrained optimization problem into an unconstrained min—max problem with decision-variable minimization and Lagrange-multiplier maximization. The mixed-integer hybrid differential evolution (MIHDE) is introduced into the evolutionary min—max algorithm to accomplish the implementation of the evolutionary Lagrange method. MIHDE provides a mixed coding to denote genetic representations of teal and integer variables, and a rounding operation is used to guide the genetic evolution of integer variables. To fulfill global convergence, self-adaptation for penalty parameters is involved in the evolutionary min—max algorithm so that small penalty parameters can be used, not affecting the final search results. Some numerical experiments are tested to evacuate the performance of the proposed method. Numerical experiments demonstrate that the proposed method converges to better solutions than the conventional penalty function method  相似文献   

7.
针对传统的空间圆弧拟合方法鲁棒性低、拟合精度不高等问题,提出了一种鲁棒性较强的空间圆弧拟合优化方法。首先,以拉格朗日乘子法为基础,基于平面条件约束建立目标函数,从而得出空间圆弧拟合方程;其次,采用RANSAC(random sample consensus,随机抽样一致)算法剔除错误跟踪点,将RANSAC算法的高稳定性应用到空间圆弧拟合的点云优化中,进而提高拟合精度。最后,通过实验分析验证了所提空间圆弧拟合优化方法的可行性,并与传统拟合方法进行比较,分析所提方法的拟合精度。实验结果表明:普通圆弧点云拟合的相对精度在0.003左右,复杂圆弧点云拟合的相对精度在0.01左右;相较于传统拟合方法,所提方法有效解决了拟合精度低及鲁棒性差等问题。研究结果表明提出的空间圆弧拟合优化方法一方面可运用拉格朗日乘子法增强鲁棒性,另一方面可通过采用RANSAC方法剔除错误点以提高拟合精度,具有广泛的工程实际应用价值。  相似文献   

8.
The paper considers global optimization of costly objective functions, i.e. the problem of finding the global minimum when there are several local minima and each function value takes considerable CPU time to compute. Such problems often arise in industrial and financial applications, where a function value could be a result of a time-consuming computer simulation or optimization. Derivatives are most often hard to obtain, and the algorithms presented make no use of such information.Several algorithms to handle the global optimization problem are described, but the emphasis is on a new method by Gutmann and Powell, A radial basis function method for global optimization. This method is a response surface method, similar to the Efficient Global Optimization (EGO) method of Jones. Our Matlab implementation of the Radial Basis Function (RBF) method is described in detail and we analyze its efficiency on the standard test problem set of Dixon-Szegö, as well as its applicability on a real life industrial problem from train design optimization. The results show that our implementation of the RBF algorithm is very efficient on the standard test problems compared to other known solvers, but even more interesting, it performs extremely well on the train design optimization problem.  相似文献   

9.
Haoxiang Jie  Jianwan Ding 《工程优选》2013,45(11):1459-1480
In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.  相似文献   

10.
We propose an algorithm for the global optimization of expensive and noisy black box functions using a surrogate model based on radial basis functions (RBFs). A method for RBF-based approximation is introduced in order to handle noise. New points are selected to minimize the total model uncertainty weighted against the surrogate function value. The algorithm is extended to multiple objective functions by instead weighting against the distance to the surrogate Pareto front; it therefore constitutes the first algorithm for expensive, noisy and multiobjective problems in the literature. Numerical results on analytical test functions show promise in comparison to other (commercial) algorithms, as well as results from a simulation based optimization problem.  相似文献   

11.
In this paper, a new numerical method, element differential method (EDM), is proposed for solving general thermal‐mechanical problems. The key point of the method is the direct differentiation of the shape functions of Lagrange isoparametric elements used to characterize the geometry and physical variables. A set of analytical expressions for computing the first‐ and second‐order partial derivatives of the shape functions with respect to global coordinates are derived. Based on these expressions, a new collocation method is proposed for establishing the system of equations, in which the equilibrium equations are collocated at nodes inside elements, and the traction equilibrium equations are collocated at interface nodes between elements and outer surface nodes of the problem. Attributed to the use of the Lagrange elements that can guarantee the variation of physical variables consistent through all elemental nodes, EDM has higher stability than the traditional collocation method. The other main features of EDM are that no mathematical or mechanical principles are required to set up the system of equations and no integrals are involved to form the coefficients of the system. A number of numerical examples of 2‐ and 3‐dimensional problems are given to demonstrate the correctness and efficiency of the proposed method.  相似文献   

12.
The harmony search (HS) method is an emerging meta-heuristic optimization algorithm. However, like most of the evolutionary computation techniques, it sometimes suffers from a rather slow search speed, and fails to find the global optimum in an efficient way. In this article, a hybrid optimization approach is proposed and studied, in which the HS is merged together with the opposition-based learning (OBL). The modified HS, namely HS-OBL, has an improved convergence property. Optimization of 24 typical benchmark functions and an optimal wind generator design case study demonstrate that the HS-OBL can indeed yield a superior optimization performance over the regular HS method.  相似文献   

13.
Multidisciplinary Design Optimization with Quasiseparable Subsystems   总被引:3,自引:0,他引:3  
Numerous hierarchical and nonhierarchical decomposition strategies for the optimization of large scale systems, comprised of interacting subsystems, have been proposed. With a few exceptions, all of these strategies lack a rigorous theoretical justification. This paper focuses on a class of quasiseparable optimization problems narrow enough for a rigorous decomposition theory, yet general enough to encompass many large scale engineering design problems. The subsystems for these problems involve local design variables and global system variables, but no variables from other subsystems. The objective function is a sum of a global system criterion and the subsystems' criteria. The essential idea is to give each subsystem a budget and global system variable values, and then ask the subsystems to independently maximize their constraint margins. Using these constraint margins, a system optimization then adjusts the values of the system variables and subsystem budgets. The subsystem margin problems are totally independent, always feasible, and could even be done asynchronously in a parallel computing context. An important detail is that the subsystem tasks, in practice, would be to construct response surface approximations to the constraint margin functions, and the system level optimization would use these margin surrogate functions. The purpose of the present paper is to present a decomposition strategy in a general context, provide rigorous theory justifying the decomposition, and give some simple illustrative examples.  相似文献   

14.
为了提高约束优化问题的求解精度和收敛速度,提出求解约束优化问题的改进布谷鸟搜索算法。首先分析了基本布谷鸟搜索算法全局搜索和局部搜索过程中的不足,对其中全局搜索和局部搜索迭代公式进行重新定义,然后以一定概率在最优解附近进行搜索。对12个标准约束优化问题和4个工程约束优化问题进行测试并与多种算法进行对比,实验结果和统计分析表明所提算法在求解约束优化问题上具有较强的优越性。  相似文献   

15.
In this article, the bi-directional evolutionary structural optimization (BESO) method based on the element-free Galerkin (EFG) method is presented for topology optimization of continuum structures. The mathematical formulation of the topology optimization is developed considering the nodal strain energy as the design variable and the minimization of compliance as the objective function. The EFG method is used to derive the shape functions using the moving least squares approximation. The essential boundary conditions are enforced by the method of Lagrange multipliers. Several topology optimization problems are presented to show the effectiveness of the proposed method. Many issues related to topology optimization of continuum structures, such as chequerboard patterns and mesh dependency, are studied in the examples.  相似文献   

16.
通过引入独立媒介面,将mortar有限元法由二场变分原理推广到三场变分原理。通过采用满足双正交性条件的对偶基函数离散Lagrange乘子空间,实现了Lagrange乘子的凝聚,由此提出了基于三场变分原理的对偶mortar有限元法。提出的新方法同时解决了常规mortar元的约束交叉、主从偏见及求解效率等问题。自主编制了相应的计算程序,并采用两个三维数值算例对新方法进行了验证。研究结果表明:基于三场变分原理的对偶mortar方法对界面连续性条件的求解精度高,可有效用于含约束交叉的非协调网格计算,所支持的复杂子区域划分使得有限元分析更为灵活。  相似文献   

17.
Numerous hierarchical and nonhierarchical decomposition strategies for the optimization of large scale systems, comprised of interacting subsystems, have been proposed. With a few exceptions, all of these strategies are essentially heuristic in nature. Recent work considered a class of optimization problems, called quasiseparable, narrow enough for a rigorous decomposition theory, yet general enough to encompass many large scale engineering design problems. The subsystems for these problems involve local design variables and global system variables, but no variables from other subsystems. The objective function is a sum of a global system criterion and the subsystems’ criteria. The essential idea is to give each subsystem a budget and global system variable values, and then ask the subsystems to independently maximize their constraint margins. Using these constraint margins, a system optimization then adjusts the values of the system variables and subsystem budgets. The subsystem margin problems are totally independent, always feasible, and could even be done asynchronously in a parallel computing context. An important detail is that the subsystem tasks, in practice, would be to construct response surface approximations to the constraint margin functions, and the system level optimization would use these margin surrogate functions. The present paper extends the quasiseparable necessary conditions for continuous variables to include discrete subsystem variables, although the continuous necessary and sufficient conditions do not extend to include integer variables.  相似文献   

18.
The preset response surface methodology (RSM) designs are commonly used in a wide range of process and design optimization applications. Although they offer ease of implementation and good performance, they are not sufficiently adaptive to reduce the required number of experiments and thus are not cost effective for applications with high cost of experimentation. We propose an efficient adaptive sequential methodology based on optimal design and experiments ranking for response surface optimization (O‐ASRSM) for industrial experiments with high experimentation cost, limited experimental resources, and requiring high design optimization performance. The proposed approach combines the concepts from optimal design of experiments, nonlinear optimization, and RSM. By using the information gained from the previous experiments, O‐ASRSM designs the subsequent experiment by simultaneously reducing the region of interest and by identifying factor combinations for new experiments. Given a given response target, O‐ASRSM identifies the input factor combination in less number of experiments than the classical single‐shot RSM designs. We conducted extensive simulated experiments involving quadratic and nonlinear response functions. The results show that the O‐ASRSM method outperforms the popular central composite design, the Box–Behnken design, and the optimal designs and is competitive with other sequential response surface methods in the literature. Furthermore, results indicate that O‐ASRSM's performance is robust with respect to the increasing number of factors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This article presents a novel parallel multi-swarm optimization (PMSO) algorithm with the aim of enhancing the search ability of standard single-swarm PSOs for global optimization of very large-scale multimodal functions. Different from the existing multi-swarm structures, the multiple swarms work in parallel, and the search space is partitioned evenly and dynamically assigned in a weighted manner via the roulette wheel selection (RWS) mechanism. This parallel, distributed framework of the PMSO algorithm is developed based on a master–slave paradigm, which is implemented on a cluster of PCs using message passing interface (MPI) for information interchange among swarms. The PMSO algorithm handles multiple swarms simultaneously and each swarm performs PSO operations of its own independently. In particular, one swarm is designated for global search and the others are for local search. The first part of the experimental comparison is made among the PMSO, standard PSO, and two state-of-the-art algorithms (CTSS and CLPSO) in terms of various un-rotated and rotated benchmark functions taken from the literature. In the second part, the proposed multi-swarm algorithm is tested on large-scale multimodal benchmark functions up to 300 dimensions. The results of the PMSO algorithm show great promise in solving high-dimensional problems.  相似文献   

20.
A radial basis function neural networks (RBF-NN) solution of the reduced Fokker–Planck-Kolmogorov (FPK) equation is proposed in this paper. The activation functions consist of normalized Gaussian probability density functions (PDFs). The use of normalized Gaussian PDFs leads to a simple constraint on the coefficients for normalization of the RBF-NN solution, which as a constraint is imposed with the help of the method of Lagrange multiplier. The relationship between the proposed RBF-NN PDF solution and the generalized cell mapping with short-time Gaussian approximation is discussed, which provides a justification for Gaussian PDFs with varying means and variances in the state space. The optimal number of neurons or activation functions, which leads to the smallest error, is investigated. Four examples are presented to show the effectiveness of the proposed solution method. The results indicate that the proposed solution method is a very efficient and accurate way to compute the stationary PDF of nonlinear stochastic systems. It is also found that the distribution of the optimal coefficients as a function of the mean of Gaussian activation functions is similar to the steady-state PDF solution. Finally, we should point out that an important advantage of the RBF-NN method over methods such as finite element and finite difference is its ability to obtain solutions of the FPK equation for multi-degree-of-freedom stochastic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号