首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although magnesium alloys became popular in the first half of the 20th century, the bad corrosion properties prevented their breakthrough in industrial mass production. Since the technology for the production of high purity alloys was introduced in the 1970s, magnesium alloys became more and more in the focus of industrial attention. Today magnesium alloys are state of the art in structural parts in automotive industry. Despite its outstanding properties like good castability, low density and nearly unlimited availability the negative aspects like weak corrosion and wear behaviour still limit the application of magnesium in industry [1]. So, the only economic solution is the deposition of a coating or a suitable surface treatment which provides both, wear and corrosion resistance. Today, plasma electrolytic anodisations are state of the art [2–5]. They provide acceptable corrosion resistance and protect the magnesium from mechanical damage due to their high hardness. On the other hand, their high porosity limits their use in combination with electrochemically noble materials, leading to galvanic corrosion [6]. In addition, the high surface roughness of the plasma electrolytic anodisations restricts their use in tribological applications, particularly under dry sliding conditions [7]. On the other hand, due to the high life time recommendations the application of magnesium in the automotive industries motion component field is a long term process. Nevertheless, there is a quite high industrial interest to apply magnesium in the motion component field in consumer applications like do‐it‐yourself or gardenig. Some examples are motor components of lawnmovers, motor saws or drills. Especially for these fields of application there are quite high demands on the corrosion properties due to undefined storage and the conditions during usage. In order to achieve smooth surfaces with high quality, the PVD technology moves into the centre of interest. Since the 1980s PVD coatings are well established and widely used for different industrial applications, mainly for steel and tool coatings. The authors were the first who carried out serious studies on the development of PVD coatings for magnesium alloys since 1999 [6, 7]. The extensive research activities lead to the recent development of a coating system, which provides both, good wear properties as well as good corrosion behaviour.  相似文献   

2.
3.
Electron beam treatment of PVD – hard coatings Coatings of the type CrNx, (Ti, Cr)N, (Ti, Al)N, Ti(C, N) and Ti(B,N) were deposited on the quenched and tempered steel C45 to investigate the effect of electron beam treatment on the structure and the properties of hard coated steels. A controlled energy input by electron beams was used to investigate the thermal behaviour of hard coatings with fixing the transformation levels by self‐quenching. Simultaneously a different case hardening of the substrate was caused providing a different effect of supporting the hard layer. There are big differences in the thermal stability of the investigated coatings. The surface hardness, adhesion and wear resistance of the composit hard coating/steel was improved in dependence on the energy input. The use of electron beam technologies enables the generation of support layers which locally increase the working behaviour of hard coated steel.  相似文献   

4.
Corrosion Studies of Steels Coated by means of PVD with Zn and Zn/Mn Alternative methods for hot dip‐ or electrogalvanic deposition of zinc coatings on steel are gas phase depositions (PVD). They posess high flexibility with respect to alloy composition, and are environmentally harmless. However, a PVD‐coated steel must have at least the same corrosion resistance than steels with “classical” surface finishing. Therefore, the corrosion behaviour of Zn‐coatings and Zn/Mn/system‐coatings deposited by electron beam evaporation without and with ion beam assistance (IBAD) on low alloy steel, was determined by means of salt spray test and electrochemical potential/time measurements. At first the influence of chemical and irradiation pre‐treatment and ion bombardment during deposition on the corrosion resistance of the coatings was investigated. Than the effect of the Zn‐layer thickness was determined in comparison with an 8μm thick electrogalvanized reference coating. Finally Zn/Mn‐alloys, Zn/Mn‐multilayers and Zn‐coatings with Mn‐ or Zn/Mn‐surface layers (top layers) were investigated. By means of optimised pre‐treatment and ion bombardment conditions one obtains, considering the layer thickness, PVD‐Zn coatings with corrosion resistance comparable with the reference layer. The best Mn‐containing coatings are Zn‐coatings with Mn‐toplayer. They surpass the corrosion resistance of the reference layer considerably. Additionally it could be shown that in tendency the potential/time measurements agree very well with the results of the salt spray test.  相似文献   

5.
Corrosion and Wear Behaviour of Nickel Dispersion Coatings with Nano Particles The present study describes the results of the electrochemical deposition of Nickel dispersion coatings from a Watts electrolyte with nano‐scaled particles. Subsequently, the incorporated particles lead to different microstructures and have impact on the mechanical properties. The corrosion and wear behaviour of these layers are of high interest regarding their applications. By means of potentiodynamic measurements and optical characterisation, the corrosion behaviour can by evaluated in correlation to the applied particles and additives. Unfortunately, an improvement of corrosion protection could not be measured. From investigations by means of oscillation tribometer, it can be shown that the incorporated particles improve the wear behaviour.  相似文献   

6.
New developments for wear an corrosion protection by weld surfacing with plasma transmitted arc process Highly wear‐resistant claddings which contain carbides can be applied by weld surfacing with the PTA process. The use of vanadium carbide prevents undesirable reactions with the matrix material. Thus, highly corrosion‐resistant Fe‐based claddings can be produced for applications in the food and marine industries, and Ni‐based claddings can be applied to components exposed to inorganic acid attack. A combined test is applied for determining the relative effect of corrosion under combined exposure to abrasive wear and corrosion and indicates the primacy of abrasive wear for behaviour in operation.  相似文献   

7.
Under extreme operating conditions like vacuum or high temperature, lubrication of rolling bearings is unwanted or even impossible. As a result of dry running conditions bearing components are exposed to high tribological stress. Thus, alternative material solutions are necessary to achieve acceptable lifetimes under these conditions. Using hybrid rolling bearings with PVD coated races might be a possible solution. Therefore, PVD coated bearings were analyzed under different test conditions to assess their characteristics. Potentials of dry running PVD coated hybrid roller bearings regarding wear and friction reduction are shown. Additionally, main damage characteristics are analyzed.  相似文献   

8.
Potentials of Innovative PVD Coatings Hard PVD‐Coatings for wear protection of tools are commonly used in many production purposes for about 20 years. Based on the experiences made with PVD‐processes for deposition of hard coatings “tribological coatings” with optimized friction properties have been developed. These friction optimized coatings can take over some of the lubricants functions in unlubricated processes. Today in many operations the use of additional lubricants can be avoided or at least minimized using innovative tool coatings. As a consequence expensive cleaning processes of the parts can be omitted and environmental pollution is reduced.  相似文献   

9.
Wear and corrosion protection using Cr and CrN (PVD coating on Al and Mg) Investigations of the wear behaviour of uncoated Magnesium and Aluminium alloys (AZ 91hp, AlSi 7Mg) are showing very high wear rates of these materials. To improve the wear behaviour both materials were coated with 9 μm CrN using PVD (Physical Vapour Deposition) technology. The tribological behaviour of the coated light metals was tested afterwards by using a plate on cylinder tribometer. Looking at the results, wear is reduced enormously. The great number of defects in the coating of the magnesium alloy is showing almost no influence to the wear behaviour. The corrosion behaviour of chromium and chromium nitride coatings was tested on the magnesium alloy. Because of the defects in the coating, caused by defects like pores in the magnesium, only a short term protection of the alloy can be achieved. The corrosion behaviour of multilayer coatings is better than the behaviour of single layer coatings.  相似文献   

10.
In this study, multilayered AlN (AlN + AlN + AlN) and AlN + TiN were coated on AZ91 magnesium alloy using physical vapour deposition (PVD) technique of DC magnetron sputtering, and the influence of the coatings on the corrosion behaviour of the AZ91 alloy was examined. A PVD system for coating processes, a potentiostat for electrochemical corrosion tests, X-ray difractometer for compositional analysis of the coatings, and scanning electron microscopy for surface examinations were used. It was determined that PVD coatings deposited on AZ91 magnesium alloy increased the corrosion resistance of the alloy, and AlN + AlN + AlN coating increased the corrosion resistance much more than AlN + TiN coating. However, it was observed that, in the coating layers, small structural defects e.g., pores, pinholes, cracks that could arise from the coating process or substrate and get the ability of protection from corrosion worsened were present.  相似文献   

11.
The present work aims to improve the wear resistance of the austenitic stainless steel X6CrNiMoTi17‐12‐2. In view of the potential use of this alloy, however, corrosion resistance should be maintained where possible. An electron beam surface treatment (cladding) was performed, and the cobalt‐based alloy Stellite® 12 was used as the wear‐resistant material. The presented results show the effects of several electron beam oscillation figures during the cladding process with regard to layer bonding, microstructure formation and hardness. The surface hardness achieved was 576±18 HV 0.3, almost three times higher than that of the base material (203±3 HV 0.3). The scratch energy density – which represents the resistance to abrasive wear – could be increased by a factor of 1.5. Under abrasive‐adhesive stress loading conditions, the determined wear volume decreased by a factor of almost 5. Based on the corrosion investigations carried out, it was possible to prove that in comparison to the base material, the tendency towards pitting corrosion could be almost completely suppressed.  相似文献   

12.
PVD coatings applied to components form hard, stronger layers and generate high residual compressive stresses that limit the plastic deformation in surface layers of the base metal thus increasing its tensile strength and resistance to fatigue loading. The purpose of this paper is to experimentally determine the influence of the deposition of 2 to 16.5‐μm‐thick PVD coatings of TiN, Cr, (Cr+TiN), (TiC)N, (TiAl)N onto specimens of stainless steel 321 and titanium alloys of types MILT‐81556A and (10‐2‐3; 4966) on their tensile strength and low‐cycle fatigue resistance when the development of large elastic–plastic strains takes place. The tensile and low‐cycle fatigue tests were conducted under conditions of axial zero‐to‐tension cycle of the stress‐controlled loading on flat 1‐ to 1.5‐mm‐thick specimens in the initial state (uncoated specimens) and after application of a PVD coating, including those after pretensioning or after cyclic prestraining in the low‐cycle fatigue range. The deposition of PVD coatings is found to enhance the characteristics of tensile strength and low‐cycle fatigue resistance in the quasi‐static fracture range. The deposition of PVD coatings on specimens cyclically prestrained to the values of 53–86% of the number of cycles to fracture, changes the cyclic properties of the material and predetermines the fatigue fracture mode only.  相似文献   

13.
Investigating the Influence of the Sputter Etching Process on the Properties of PVD‐CrN Coatings on Magnesium Die Cast Alloy AZ91hp A common method prior to the PVD deposition is the sputter etching process of the substrate itself to clean the surface from adhesion products and to improve the coating adhesion. This report deals with the sputter etching of magnesium die cast alloy AZ91hp to investigate the influences on the coating‐substrate interface, the surface properties and the mechanical properties of PVD‐CrN hard coatings. The coating‐substrate interface of the Cr‐AZ91 coating systems was investigated with XPS and SIMS. Surface studies were carried out by high resolution electron microscopy and AFM. The characterization of the mechanical properties of the CrN‐AZ91 compound systems includes thickness, coating hardness and hardness depth profiles, coating adhesion, structure and residual stresses. Some properties show a strong dependency of the etching time, especially the mechanical properties and the coating roughness. Increasing etching times lead to an improvement of the coating quality.  相似文献   

14.
Nanocomposite coatings on CBN‐tools CBN (cubic boron nitride) cutting materials are often used to improve the properties of cutting tools. This allows new applications and processes, which are not possible with common cutting materials (e.g. hard metals). Today CBN cutting materials are mostly coated to estimate the wear by an optical evaluation. Coatings on CBN cutting materials for enhancement of the tribological properties are normally not used. For improvement of the properties of used CBN tools during the cutting process a coating technology was developed. This technology combines the advantages of CBN cutting materials with the excellent properties (e.g. hardness, temperature stability) of nanostructured materials. Investigations with different coating systems and pre‐treatment processes were done to test the CBN cutting tools. These investigations have been shown, that nanocomposite coatings can be used to enhance the tool life of CBN cutting tools. Important for an increase in the tool life is a very good coating adhesion, which can be reached by special adhesion layers and an optimized coating structure.  相似文献   

15.
The application range of porous all‐oxide ceramic matrix composites (CMCs) can be significantly extended through deposition of protective coating systems. Typical applications include protection against erosion, wear and foreign object damage as well as a reduced permeability. Environmental barrier coatings (EBC) are mandatory in order to guarantee sufficient lifetime of the CMC components under high temperature‐, high heat flux conditions and corrosive attack (combustor liners, thermal protection systems for atmospheric reentry). Limited thermal stability of today’s oxide fibers requires additional thermal barrier functionality for EBCs in order to keep the effective CMC bulk temperatures below 1200 °C. Depending on the specific application DLR’s coating concept for all‐oxide CMCs is based on either a single reaction‐bonded aluminium oxide (RBAO) coating or a hybrid coating system consisting of a RBAO bond coat followed by an EB‐PVD YSZ/FSZ top coat and is highlighted for three case studies. Deposition techniques (magnetron sputtering, MOCVD) alternative to EB‐PVD as well as the suitability of fibrous and cellular materials for thick EBC/TBC layers are explored.  相似文献   

16.
Performance of two different physical vapour deposited (PVD) TiCN and Alcrona® (AlCrN) coatings systems is under investigation. Coatings were deposited on the punches produced from the Böhler S390 Microclean steel. Two different surface preparation techniques were used – wet polishing (high surface roughness) and dry polishing (low surface roughness).Industrial trials of PVD coated punches in fine blanking operation were performed and studied. Wear of punches was analysed in regard to the punch geometry, position in the die and surface roughness, and measured after maximum 100,000 cycles at high loads.Punches with higher surface roughness seem to withstand numerous loading cycles with some traces of coating delamination and wear. On the other hand performance of PVD coatings with smaller surface roughness in a striking way was much worse.Comparative trials of the coatings surface fatigue wear and indentation surface fatigue testing were performed in the laboratory as well. In surface fatigue wear testing coatings were dynamically indented by ball (spherical) indenters made from conventional hardmetal (WC-6 wt.%). Testing parameters were identical to those of industrial trials. The Vickers diamond pyramid indenter was cyclically pressed with 500 N load at single point during indentation surface fatigue testing. Results are in agreement with surface fatigue wear tests results.Finally the microstructural investigations using SEM and XRD techniques were performed for better understanding of the surface fatigue and wear mechanisms during fine blanking process.Results of both trials are in good agreement and allow predicting performance of coatings.  相似文献   

17.
Stainless steel components exposed to mechanical stresses are subjected not only to corrosion, but to abrasive wear. There are several possibilities for enhancing the wear resistance of stainless steels; however, such processes are very often associated with a reduction in corrosion resistance. This paper presents an electron beam surface treatment technology to significantly improve the wear resistance of austenitic steels (e.g. X6CrNiMoTi17‐12‐2) and duplex steels (e.g. X2CrNiMoN22‐5‐3), without a negative influence on the corrosion behavior. Fe‐ and Co‐additive wires were deposited thermally by electron beam cladding. The cladding layers produced were free of defects such as cracks and pores, and were well metallurgical bonded to the base materials. Microstructural analysis, hardness measurements, wear tests and corrosion tests were carried out. The wear rate k was reduced by a factor of 100 compared to the base materials for electron beam cladding with Fe‐based wire and by a factor of 10 with Co‐based wire. Corrosion resistance was preserved for the Fe‐based cladding layers and slightly increased (by a factor of 3) for the Co‐based cladding layers.  相似文献   

18.
PVD Nanocomposite coatings for the machine cutting and deformation technique Physically and chemically separated wear‐protection layers exhibit increasingly more complex structures. Similarly to the a coil of compact materials increase also here solutions develop as composite materials, which are offered in the form of Nanocomposites. An industrially available solution represents the system MeN/Si3N4. This is to be introduced concerning its characteristics as well as its application type within the range of the machine cutting and deformation technique.  相似文献   

19.
Elastic‐Plastic Deformation Behavior of Nanostructured HPPMS Hard Coatings Nitride hard coatings deposited via HPPMS (High Power Pulsed Magnetron Sputtering) or HiPIMS (High Power Impulse Magnetron Sputtering) are widely used in tribological applications due to their promising wear and corrosion resistance. During the application, the coated tools or components may be exposed to significant mechanical loads. Therefore, investigations on deformation behavior of the coatings under mechanical loading are of great importance. The objective of the present study was a comprehensive investigation on deformation behavior of nitride hard coatings from the coating system M‐Al‐O‐N (M = Cr, V) using nanoindentation und nanoscratch tests. In this regard, both nanoscale multilayer (nanolaminate) and monolayer coatings were investigated. All the coatings were deposited using HPPMS technology. Contrary to the expectations regarding a brittle behavior of ceramic‐like coatings, the results depict a considerable plastic deformation of the investigated hard coatings. Furthermore, in addition to a high strength, the applied coatings show a high crack resistance under mechanical loading.  相似文献   

20.
镁合金表面耐腐蚀性能、耐磨性能较差,物理气相沉积(PVD)镀膜技术是一种提高镁合金表面性能的有效方法。总结了PVD镀膜防腐蚀层和耐磨层的特性,分析了涂层耐腐蚀耐磨的机理和存在的不足。综述了镁合金表面PVD膜层的研究进展,阐述了物理气相沉积技术对镁合金的表面改性的应用现状,并对该技术在镁合金上的发展进行了概括,指出了目前PVD技术在镁合金表面防护领域的新前景,为今后PVD技术对镁合金表面防护的研究与发展提供了相关参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号