首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
In order to explore a new method for the explosive welding of aluminum alloy to steel, a 5083 aluminum alloy plate and a Q345 steel plate with dovetail grooves were respectively employed as the flyer and base plates. The parameters adopted in the explosive welding experiment were close to the lower limit of weldable window of 5083 aluminum alloy to Q345 steel. The bonding properties of 5083/Q345 clad plate were studied through mechanical performance tests and microstructure observations. The results showed that the aluminum alloy and steel plates were welded under the actions of metallurgical bonding and meshing of dovetail grooves. The tensile shear strength of 5083/Q345 clad plate met the requirements of the bonding strength of Al/Fe clad plate. The interfaces between aluminum alloy and the upper and lower surfaces of dovetail grooves were mainly welded through direct bonding, and discontinuous molten zone emerged in the local region; while the interface between aluminum alloy and the inclined surface of dovetail grooves was bonded by continuous molten layer. The brittle intermetallic compounds FeAl2 and Al5Fe2 were generated at the bonding interfaces of 5083/Q345 clad plate. The fracture surface of the tensile specimen exhibited ductile and quasi-cleavage fractures.  相似文献   

2.
研究爆炸焊接动态参数对复合质量至关重要。本文对铜复板的动态弯折角、碰撞速度等动态参数进行了研究 ,得到了铜复板飞行姿态、超声速复合中临界碰撞角和铜复板飞行速度上限 ,对试验与生产有一定的实用价值。  相似文献   

3.
目的 采用搅拌摩擦焊,对比分析大气环境和水下环境下铝/铜接头的组织与性能,以期获得力学性能更优异的铝/铜焊接接头。方法 利用搅拌摩擦焊,在焊接速度为40 mm/min、旋转速度为1 000 r/min的条件下,分别在大气环境和水下环境下对厚度为9 mm的6061铝合金板和T2纯铜板进行焊接。然后,对铝/铜界面、焊核区进行扫描电镜及能谱分析,并对铝/铜界面及焊核区进行物相分析,确定产物相组成。最后,对铝/铜试样进行拉伸及硬度检测。结果 铝/铜接头均无裂纹、气孔等缺陷。铜颗粒弥散分布在焊核区,铝/铜界面形成金属间化合物层。水下搅拌摩擦焊下界面元素扩散距离明显变短,且金属间化合物厚度更薄。铝/铜接头的金属间化合物为AlCu和Al4Cu9。大气环境焊接下接头的抗拉强度为130.6 MPa,断裂方式为脆性断裂;水下焊接下接头的抗拉强度为199.5 MPa,断裂方式为韧性断裂。水下环境下的接头硬度值更高,其中热影响区的硬度最低值约为65HV。结论 水下搅拌摩擦焊铝/铜接头无裂纹、气孔等缺陷。组织上,水下搅拌摩擦焊的铝/铜接头界面元素扩散距离更短,硬脆的金属间化合物更少;性能上,水下搅拌摩擦焊的铝/铜接头强度更高,抗拉强度达到199.5 MPa,达到母材的74.4%。  相似文献   

4.
通过爆炸焊接法制备TA2/3A21/AZ31B三层复合板,利用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)和万能试验机对复合材料的界面、金相组织和力学性能进行测试与分析。实验结果表明:通过一次爆炸焊接制备的TA2/3A21/AZ31B复合材料,其抗拉强度约为303 MPa,屈服强度约为233 MPa,断后伸长率约为9.7%;在钛/铝界面与铝/镁界面均形成爆炸焊接特有的波状结构,界面处分别形成了厚度约5 μm的Ti-Al扩散层和30 μm的Al-Mg扩散层,其剪切强度分别为132.6 MPa和116.3 MPa。与TA2/AZ31B复合材料相比较,该复合材料的力学性能有较大提升。   相似文献   

5.
An AA5083 aluminum alloy plate and an SS41 steel plate were cladded by an explosive welding method using an AA1050 aluminum alloy interlayer plate. The effects of the interlayer thickness on the interface morphology and the shear deformation behavior of the cladded plates were studied. The interfacial zone was composed of an intermetallic compound, FeAl3, formed by the AA1050 interlayer. The intermetallic compound acted as a crack source at the AA1050/SS41 interface, and the thickness and morphology of the interfacial zone were depended on the thickness of the AA1050 interlayer. In a shear deformation test, the crack propagation behavior varied according to the morphologies of the interfacial zone, and the shear strength of the cladded plates decreased with the interlayer thickness.  相似文献   

6.
为了研究双层爆炸焊接中覆板的最小可焊厚度,分析了爆炸焊接对于炸药布药量的要求,提出了一种利用爆炸焊接的碰撞速度下限与覆板的一维平板运动公式计算爆炸焊接中覆板最小可焊厚度的方法,并采用爆炸焊接中常用的3种炸药,分别对不锈钢-钢、铝-钢、钛-钢、铜-钢的爆炸焊接最小可焊厚度进行计算,计算得出4种覆板的最小可焊厚度分别在1.5、2.5、2.0、1.5 mm左右。同时指出在进行小厚度覆板的爆炸焊接时,由于密度更低的炸药爆轰压力也更低,可以更好地适用于小厚度覆板的爆炸焊接。  相似文献   

7.
Explosive welding is one of the joining techniques which employs high energies derived from explosives to join materials with similar and dissimilar properties. In this paper, the weldability criteria which should be met to achieve good welds were calculated for aluminum–copper joints. Different morphologies for welding interface (straight, wavy and melted layer) were obtained with changing welding parameters. Results on the microstructure, micro-hardness and tensile-shear tests were reported. Tensile-shear test results indicate that shear bond strength increases with increasing explosive ratio. However, shear bond strength decreases when the explosive ratio exceeds R = 2.2 due to the formation of brittle intermetallics at the interface. This knowledge may be utilized for establishment of a relation between microstructure and properties in the process of manufacturing.  相似文献   

8.
为研究铜铝异种金属爆炸焊接头界面形成机理,采用爆炸焊对T2纯铜和2024铝合金进行了焊接.通过光学显微镜、扫描电镜、X射线衍射、万能材料试验机和纳米压痕仪,对T2/2024复合板结合界面的显微组织、成分分布和力学性能进行了测试分析.结果表明:T2/2024合金爆炸复合板结合界面呈波状结合,结合界面主要由平直界面、波状界面和局部熔化层界面构成;靠近结合界面处,基体金属发生塑性变形,晶粒细化;反应层主要成分为AlCu和Al_2Cu的混合物.复合板拉剪试验表明,T2/2024合金爆炸复合板平均结合强度为67 MPa,纳米压痕测试反应层平均硬度可达8 GPa.  相似文献   

9.
Horizontal twin‐roll casting technology was successfully introduced to produce high‐performance copper/aluminum (Cu/Al) laminated composites. The interface morphology, electrical properties and peeling strength after different annealing and cold rolling processes were investigated and contrasted with Cu/Al clad plates fabricated by conventional methods. The results show that sound metallurgical bonding between the copper and aluminum matrix can be attained after the horizontal twin‐roll casting processes and Al2Cu is the only intermetallics at the interfacial region, the thickness of interfacial interlayer is about 0.7 μm. The peeling strength is 31.4 N/mm and can be further increased to 37.1 N/mm after annealing at 250 °C. However, higher temperature like 400 °C will cause the excessive growth of intermetallics so that peeling strength sharply decreases to 9.2 N/mm. Electrical conductivity of the clad plate is 51 MS/m. At the same electrical current intensity, the temperature‐rise of the composite plate is between the pure copper plate and the aluminum plate, and closer to the copper plate. All of the properties are outstanding than that of Cu/Al clad plate fabricated by conventional methods.  相似文献   

10.
为了揭示铜/钢爆炸焊接的结合机理,采用光学显微镜(OM)、扫描电子显微镜(SEM)和纳米压痕仪等对T2纯铜/Q245钢爆炸焊接头结合界面组织和微力学性能进行了分析.结果表明:T2纯铜/Q245钢爆炸复合板结合界面呈现较规则的正弦波形,界面结合良好,界面处原子发生强烈扩散,形成了过饱和铜钢固溶体;界面不同区域固溶体微力学性能不同,纳米硬度在2.02~3.08 GPa,弹性模量在129.6~172.1 GPa;由界面弹性模量分布云图可知,固溶体层连续分布在界面上,由于界面原子扩散程度不同,部分区域的固溶体层厚度很薄,在光镜下很难识别,而在波峰处固溶体则比较明显.固溶体的弹性模量均比铜基体的大,其原子键合强度强于铜基体原子,在一定程度上增强了界面的结合强度,从而使界面的结合强度高于铜基体;爆炸焊接头的拉剪试验断裂位置均位于铜侧,也证实了界面结合强度高于铜基体的强度。  相似文献   

11.
Abstract: Experimental tests were carried out to explosively clad solution‐annealed Inconel 718 super alloy on quench‐tempered AISI H13 hot tool steel. The tests were performed using various stand‐off distances and explosive–to‐flyer plate mass ratios. Various interface geometries were obtained from these experiments. All the experiments were simulated using ABAQUS version 6.9 finite element software. The Williamsburg equation of state and Johnson–Cook constitutive equation with its corresponding failure equation were used to model the behaviour of explosive and plates, respectively. The experimental results showed that the shape of interface fell roughly into three classes, wavy or wavy with some vortex shedding or smooth‐wavy. Various interface morphologies were achieved by changing the stand‐off distances and explosive–to‐flyer plate mass ratios because of change of impact velocity and dynamic collision angle. Numerical results showed that high localised plastic deformation was produced at the bond interface. Equivalent plastic strain and shear stress could be criteria for transition of interface morphology. Welding window of alloys was also developed.  相似文献   

12.
为了研究在不同爆炸焊接工艺条件下获得的复合板的轧制效果,本文对大波、小波、微波状3种界面的1Cr18Ni9Ti/20G复合板进行轧制实验研究.实验表明:只有用下限获得的微小波状界面的爆炸焊接复合板,才能实现成功轧制,而大波状复合板界面存在一定的缝隙、空洞等微观缺陷,在轧制时由于分层会使轧制失效.爆炸焊接 轧制工艺获得的复合板结合界面的组织、强度和性能的测试结果表明:轧制复合板结合界面的剪切和分离强度虽比爆炸态略低,但延伸率、冲击韧性都大大增强,轧制复合板的耐蚀性能也未降低.  相似文献   

13.
目的探究搅拌摩擦辅助铆接铝/钢接头界面的结合特征,解决传统铆接力学性能较低的问题。方法采用搅拌摩擦焊技术实现了对3mm厚不锈钢板和4mm厚的铝合金板的搭接点焊,采用OM及SEM对铝/钢接头界面结合情况进行分析,并利用EDS对界面处元素分布进行分析。结果搅拌头转速1180 r/min、焊接时间120 s、下压量0.2 mm时,铝/钢接头界面结合较好,平均拉剪力达到6519 N,且在铝/钢界面处产生FeAl金属间化合物。受摩擦热作用的影响,位于下板的铝母材晶粒发生长大变粗,铝铆钉与铝板结合紧密,铝铆钉与铝板的结合情况受搅拌头压力的影响更为显著。结论搅拌摩擦辅助铆接铝/钢异种合金,实现了铆钉与铝板和钢板的有效冶金结合,在铝钢结合界面处存在原子的互扩散现象,且有相应的金属间化合物生成。  相似文献   

14.
针对实际生产中在爆炸焊接窗口内取值时因为所取参数不同而导致生产的复合板结合强度差异较大这一现状,通过对SUS304不锈钢/Q345R碳钢爆炸焊接窗口内不同工艺条件得到的复合板进行剪切强度测试及金相分析,得到界面结合强度与界面波形的关系以及两者随工艺参数的变化规律,找到窗口内最佳的工艺参数,以提高爆炸焊接复合板质量以及生产效益。研究表明:界面波形的波长和振幅随着装药量的增加而增大,随基复板间距的增加先增大后减小。爆炸焊接窗口内最佳工艺参数取值范围与复板厚度有关。复板为薄板(3mm)时,取得最佳结合强度时界面波形波长为1250μm左右,振幅为200μm左右,对应的最佳装药质量比为1.02,基复板间距为8mm,取值比理论最佳值偏高;复板为厚板(6mm)时,取得最佳结合强度时界面波形波长为900岫,左右,振幅为100μm左右,对应的最佳装药质量比为0.45,基复板间距为14mm,取值靠近下限。当界面波长与振幅相同时,复板为薄板的结合强度要高于厚板。  相似文献   

15.
铜钢爆炸焊接动态参数的研究   总被引:2,自引:0,他引:2  
研究爆炸焊接动态参数对复合质量至关重要。本文对铜复板的动态弯折角、碰撞速度等动态参数进行了研究 ,得到了铜复板飞行姿态、超声速复合中临界碰撞角和铜复板飞行速度上限 ,对试验与生产有一定的实用价值。  相似文献   

16.
钛/钢双立式爆炸焊接参数优化   总被引:1,自引:1,他引:0  
为解决大面积钛/钢爆炸焊接窗口窄,在结合区易出现"过熔"和"射流堆积"等微观缺陷的问题,开展了双立爆炸+轧制综合制造技术,进行了低爆速爆炸焊接用炸药试验优化,发明了一种最低临界爆速爆炸焊接用炸药,设计确定了刚性防护板和柔性防护墙构成的双立综合防护结构及参数,研究了钛/钢爆炸焊接装药厚度窗口.结果表明,双立钛/钢复合板结合界面成波状结合,几乎不存在金属熔化、漩涡等微观缺陷.  相似文献   

17.
This work describes an advanced technique for metal welding and composite production, namely laser shock welding. A series of laser shock welding experiments were conducted to verify the welding ability of aluminum/aluminum and aluminum/copper plates. Two kinds of interface morphologies were observed by metallographic investigation on cross-sections of the joint areas, including the linear and wavy interfaces. Besides, micro-hardness testing results show the welded interface has a much greater hardness than the base metals. The lap shearing test was used to characterize the joint. According to the experimental results, it can be imply that this kind of technique shares the same bonding mechanism with explosive welding and magnetic welding.  相似文献   

18.
厚板爆炸焊接窗口理论的应用   总被引:4,自引:0,他引:4  
厚板爆炸焊接的焊接质量,焊接与否都比薄板更加强烈地依赖于爆速,复板加速间抛掷角,打击速度等焊接参数,该文根据可焊窗口理论,对厚板爆炸焊接参数选择时应注意的总理2进行了分析,尤其对焊接上限问题进行了较深入地讨论。  相似文献   

19.
通过设计不同的爆炸焊接工艺参数爆炸复合了铝合金-钢爆炸复合板,并对复合板的界面性能进行了显微分析和力学性能测试,探讨了爆炸焊接装药量对复合板界面性能的影响。结果表明:在铝合金-钢复合板的的结合界面产生了一层金属间化合物并且在化合物中产生了许多微裂纹。随着装药量的增加,界面化合物的厚度略有增加,其上微裂纹的的数量也有所增加。复合界面的剪切强度随着装药量的增加而有所降低。界面化合物对复合板强度产生不利影响,铝合金-钢爆炸焊接时应尽量采用小药量。  相似文献   

20.
爆炸焊接法生产铜/钢油膜轴承衬板   总被引:1,自引:0,他引:1  
李红富  段卫东 《爆破》2005,22(3):101-104
介绍了用爆炸焊接法生产铜/钢油膜轴承衬板时爆炸工艺参数的确定原则,提出了小面积复合板合并焊接、涂黄油保护复板及将起爆点设置在后续加工切除点的爆炸焊接方法.其技术可供类似爆炸焊接工程参考和借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号