首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用晶体取向分布函数(ODF)研究和分析了中间退火对高纯铝箔立方织构的影响。研究结果表明:中间退火对高纯铝箔冷轧形变织构影响不大,但对成品退火箔材中立方织构和R织构含量产生重要影响,在300C/2h中间退火条件下,成品箔材中再结晶立方织构物取向密度最大,R织构含量较小。  相似文献   

2.
本文评述了低压电容铝箔的成分、热处理、显微结构和比电容之间的关系,所得结论是:(1) 硬态高纯铝箔由于有高的位错密度,在腐蚀、形成之后的比电容比退火铝箔高;(2)高纯铝箔经过适当热处理后的比电容,随表面立方织构分数的增加而增大;(3)某些微量元素使退火高纯铝箔的位错密度和表面立方织构分数都得到增加,因而更有效地增大其比电容;(4)退火铝和铝合金箔的晶粒尺寸对比电容没有明显影响。  相似文献   

3.
应用取向分布函数(ODF)研究和分析了异步轧制高纯铝箔的形变织构和再结晶织构.结果表明:异步轧制高纯铝箔的形变织构除了C{112}<111>、B{110}<112>和S{123}<634>织构组分外,还有较强的CubeND{001}<110>和{102}织构.异步轧制高纯铝箔的再结晶织构由强的立方织构{001}<100>和弱的R{124}<211>织构组成.随着形变量的增加,异步轧制高纯铝箔的形变织构和再结晶织构呈现规律性的变化,{102}织构减少,S织构先增后减,速比较小时C织构近线性减少,速比较大时C织构则先增后减.异步轧制高纯铝箔的退火样品中有很强的立方织构,这与异步轧制提高高纯铝箔的形变储能有关,形变量过大时,立方织构随形变量的增加急剧减少.{102}织构有利于再结晶立方织构的加强.  相似文献   

4.
利用蚀坑法对强立方织构铝箔腐蚀发孔的机理进行了研究,通过对退火铝箔施加拉伸微变形,使箔内位错密度急剧增加,蚀孔数目以及面积比均得到提高.实际生产中该方法可用于提高高纯铝箔腐蚀的发孔率.  相似文献   

5.
王运雷  张杰  龚丽娟 《材料导报》2018,32(10):1612-1617
采用不同中间退火温度及成品退火速率对高压阳极铝箔进行处理,并利用EBSD及XRD技术分析其微观组织结构,尤其是织构的变化规律。结果表明,中间退火温度对后续成品退火中形成立方织构起到了关键作用,这可能是由于低温中间退火保留了大量的形变储能,为成品退火时立方织构的形成增加了形核核心。同时,低的中间退火温度造成立方织构较理想位置偏转程度更大。随着成品退火加热速率的增大,铝箔再结晶分数及再结晶晶粒尺寸逐渐减小,这是由于退火加热速率的增大(低于临界加热速率),缩短了晶界迁移的时间,减缓了再结晶的发生。  相似文献   

6.
3104铝合金再结晶织构的研究   总被引:1,自引:0,他引:1  
张德芬  黄涛  胡卓超  左良  王福 《材料工程》2004,(11):28-31,36
应用取向分布函数(ODF)研究和分析了3104铝合金经不同工艺退火后的再结晶织构.结果表明:3104铝合金,形变织构由C{112}〈111〉,B{110}〈112〉,S{123}〈634〉织构组分组成;退火温度和保温时间对3104铝合金再结晶织构有重要影响,在低温短时退火时立方织构取向密度较弱,但随温度升高和保温时间的延长,立方织构取向密度逐渐增加,在经350℃60min,400℃60min和450℃15min等温退火后,再结晶基本完成,立方织构取向密度在400℃保温60min退火时达到最大,约为10级,但仍保留有少量冷轧织构;随着退火温度的升高,第二相粒子Al6(Fe,Mn)和Al(Fe,Mn)Si在再结晶过程中起到了粒子促进形核作用(PSN).  相似文献   

7.
对3%(质量分数)Si CGO硅钢冷轧板进行初次再结晶退火实验,设置不同的退火保温时间,将退火后的样品分别使用OM,TEM及EBSD进行分析,观察其微观组织、位错及织构分布,研究CGO硅钢初次再结晶过程中组织及织构的演变规律。结果表明:随着退火保温时间的延长,回复再结晶的程度增加,当保温时间延长至300s时,再结晶基本完成且呈现等轴晶状态,随着保温时间的延长,组织中位错密度降低。初次再结晶退火保温时间对初次再结晶织构分布有影响:随着保温时间的延长,{111}〈112〉和{110}〈112〉织构含量不断下降,{111}〈110〉织构的含量先减少后增加,立方及旋转立方组分基本保持不变,Goss织构组分逐渐增多。当保温时间较短时,晶粒取向差主要为小角度晶界并存在大量亚晶,随着保温时间的延长,大角度晶界逐渐增多。  相似文献   

8.
微观组织对电解电容器铝箔比电容的影响   总被引:4,自引:0,他引:4  
主要探讨了微观组织结构对电解电容器用铝箔比电容的影响。分析表明,高压阳极铝箔需要具有95%以上的立方织构以及一定的晶粒度;软各中低压阳极铝箔需要有75%~85%的立方织构,防止粗大的第二相产生,正品粒要求细小;硬念中低压阳极铝箔需要有高的位错密度和85%以上的(110)织构。硬态负极铝箔要求全属间化合物粒子细小弥散分布在Al基体中,均匀的位错分布和柯氏气团,从而获得均匀的海绵孔腐蚀。  相似文献   

9.
利用X射线衍射织构分析技术和电子背散射衍射微织构分析技术,对0.20mm CGO硅钢薄板在高温退火缓慢升温过程中表层和次表层的织构演变规律进行了研究。结果表明:0.20mm CGO硅钢在高温退火过程中经历了低温回复、初次再结晶、初次再结晶晶粒长大和二次再结晶形成最终锋锐Goss织构的演变过程。Goss取向晶粒最初起源于变形回复基体中残存于{111}〈112〉形变带上少量的Goss晶粒亚结构,600℃保温2h后,Goss取向晶粒率先从变形基体中转变形核,在随后的升温过程中逐渐发生再结晶,Goss取向晶粒在此过程中并不具有尺寸优势,700℃时初次再结晶完成,基体中以γ纤维织构和{112}〈110〉织构为主;随着退火温度的升高,Goss晶粒的含量和平均晶粒尺寸逐渐增加,在900~1000℃之间,Goss取向晶粒迅速"吞噬"其他取向晶粒形成锋锐的Goss织构,1000℃时已经发生了二次再结晶。  相似文献   

10.
高压阳极电容铝箔生产工艺对立方织构的影响   总被引:1,自引:1,他引:0  
综合分析了高压阳极电容铝箔生产工艺对立方织构的影响,包括化学成分、热轧,冷轧及热处理工艺等,力求最大程度地增加铝箔中立方织构的含量,以达到提高铝电解电容器比电容和组织均匀化的目的。  相似文献   

11.
The recrystallization behaviour of 92% cold rolled commercial pure aluminium has been studied. Annealing was done at different conditions to evaluate the effect of recrystallization temperature and time on the microstructure and texture of the alloy along with a study of subsequent precipitation. Variation of orientation between grains has been studied by the orientation imaging microscopy (OIM). During precipitation, cube component {001}<100> has dropped and rolling texture component has increased comparatively. Recrystallization texture is the combination of cube, rolling and random texture. However, during grain growth strong cube grains have formed. A significant number of dislocations are present during grain growth owing to the pinning effect of Al3Fe particles.  相似文献   

12.
钇对AZ91在NaCl溶液中腐蚀的影响   总被引:4,自引:0,他引:4  
通过静态失重法、极化曲线测试研究了钇(Y)对AZ91镁合金腐蚀行为的影响。结果表明加入钇(Y)可在基体内形成块状的YAl2化合物,并使AZ91微观组织得到改善,减缓了在NaCl溶液中的腐蚀。  相似文献   

13.
Abstract

The microstructure and texture of three dilute aluminium alloys after hot deformation and annealing was assessed; In particular, the influence of deformation temperature, strain rate, and strain on the annealed texture was examined, as well as the effect of alloy composition. The microstructures of the commercially pure materials studied (Al, Al+1%Mn and Al+1%Mg) varied in the volume fraction of coarse intermetallic particles, the type of dispersoid present, and the level and type of solute in solid solution. Furthermore, the initial stages of recovery and recrystallisation were studied in detail for one of the alloys (commercially pure Al). It was found that the main recrystallisation texture component was the cube and its strength, as well as the recrystallised grain size, depended strongly on the deformation strain. The deformation strain rate and temperature, and the alloy composition also strongly influenced the grain size and cube texture strength. These results are discussed in the context of current theories for cube nucleation within cube bands in the hot deformed microstructure. The present work was carried out as part of a wider research programme, partially supported by the European Union (Brite/Euram funded), to develop micromechanical models to describe the evolution of microstructure and texture during hot deformation and annealing of aluminium alloys.

MST/3376  相似文献   

14.
Analytical transmission electron microscopy has been used to examine the oxide dispersion in the mechanically alloyed, nickel-based, dispersion strengthened superalloy INCONEL alloy MA6000. Four mixed AI-Y oxides were identified in consolidated powder: Y3Al5O12, yttrium aluminium garnet (YAG); YAIO3, yttrium aluminium perovskite (YAP); Y4Al2O9, yttrium aluminium monoclinic (YAM), and a previously unidentified YAlOI3 polymorph. This new phase, designated yttrium aluminium hexagonal (YAH), has lattice parameters ofa = 2.206 ±0.035 nm andc = 3.219 ± 0.096 nm, a space group of P63mc and consists of 18 closepacked oxygen layers with the yttrium and aluminium cations in the resulting interstices. It is proposed that the high local stresses, strains and temperatures which occur during the mechanical alloying process facilitate the formation of the highly complex YAH phase. All four oxide types also contain significant amounts of zirconium (up to 13 cation at%) which randomly substitutes for both the yttrium and aluminium ions. This substitution was sufficient to have caused the removal of 75% of the zirconium from solution in the matrix.  相似文献   

15.
Cube texture is a sharp recrystallization texture component infcc metals like aluminium, copper, etc. It is described by an ideal orientation i.e. (100) (100). The subject of cube texture nucleation i.e. cube grain nucleation, from the deformed state of aluminium and copper is of scientific curiosity with concurrent technological implications. There are essentially two models currently in dispute over the mechanism of cube grain nucleation i.e. the differential stored energy model founded on the hypothesis proposed by Ridha and Hutchinson and the micro-growth selection model of Dugganet al. In this paper, calculations are made on the proposal of Ridha and Hutchinson model and the results are obtained in favour of the differential stored energy model. It is also shown that there is no need for the micro-growth model.  相似文献   

16.
Abstract

The evolution of recrystallisation textures in the commercial aluminium alloy 3103 has been investigated by means of a three-dimensional orientation distribution function (ODF) analysis. The global texture measurements were supplemented by local texture measurements by means of the electron backscattering pattern (EBSP) technique in SEM and optical microscopy, inparticular grain size measurements. The evolution of recrystallisation textures was determined by the competition between particle stimulated nucleation (PSN) and nucleation from cube bands. Precipitated particles were found to have a higher retarding effect on the nucleation from deformation zones around particles than on the nucleation from cube bands. The result of this is a strong cube texture and a large grain size in cases of a strong precipitation reaction. This phenomenon has also been discussed theoretically in terms of a semiquantitative model.  相似文献   

17.
Abstract

Information on the stored energy after cold deformation and stress relieving would provide a greater understanding of the mechanism that controls the primary recrystallisation in deformed metals. Stored energy as a function of crystal orientation of 88% cold rolled and stress relieved can body aluminium alloy is calculated using the diffraction peaks from X-ray analysis. The obtained stored energy values are presented in the form of a stored energy distribution function on Euler angle space similar to the orientation distribution function. The stored energy along the β fibre that characterises the deformation texture and cube recrystallisation texture components is discussed in detail. A significant reduction of stored energy for the cube texture component after stress relieving is observed.  相似文献   

18.
Abstract

A quantitative study of variations in microstructure and texture evolution in the through thickness direction of industrially hot rolled AA 3004 aluminium alloy has been carried out. The microstructural features of the specimens were examined with the aid of the electron channelling contrast technique in conjunction with an image analysis system. The number of recrystallised grains and the size distributions of coarse and fine intermetallics were measured to evaluate the variation between surface and centre. Significant differences in the number of recrystallised grains and the average size of coarse intermetallics in the through thickness direction of the hotband were observed. After isothermal annealing of the hotband for various times the fine intermetallic area fraction increased and was higher at the centre than at the surface. Quantitative texture analysis was carried out on the specimens and various texture components estimated to characterise the through thickness texture evolution. The proportion of cube texture component was higher near the surface than at the centre and this difference increased after isothermal annealing. Since negligible change occurred in the cube content of the centre specimen, growth of cube grains was deduced to have taken place primarily near the surface region. These observations illustrate that mechanisms of cube texture formation, heterogeneous nucleation of precipitates causing retarded recrystallisation, and Zener drag are evidently applicable even to complex commercial alloys.

MST/1849  相似文献   

19.
It is established that Cu-1.6 at % Fe alloy tapes obtained through cold rolling to 98.9% followed by recrystallization annealing possess a sharp cube texture, which opens prospects of using thin tapes of this alloy as substrates for second-generation high-temperature superconductors. The optimum regime of annealing is determined that allows an alloy with sharp biaxial texture containing more than 97% cubic grains to be obtained. The yield stress of a 90-μm-thick Cu-1.6 at % Fe alloy tape upon recrystallization annealing at 800°C for 1 h amounts to 78 MPa, which is about three times higher than the value for a pure copper tape with sharp cube texture.  相似文献   

20.
The correlation between the mechanism of recrystallisation and the annealing texture of aluminium-copper alloys was investigated by transmission electron microscopy and selected area diffraction, and pole figure determination by X-rays. Continuous recrystallisation by sub-grain growth leads to preservation of the rolling texture, while recrystallisation by motion of a high-angle boundary produces a cube texture as in pure aluminium. The conditions under which the different modes of recrystallisation occur and the reasons for the formation of the two types of textures are discussed on the basis of microscopic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号