首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
本文研究了掺杂CaO-Y2O3热压烧结和常压烧结AlN陶瓷的晶界相及其产生过程和除氧机制;分析了峡谷种烧结工艺烧制的AlN陶瓷的晶界成份测定不同晶界相含量和晶界成份对应的AlN陶瓷的热导率。  相似文献   

2.
采用热压烧结技术,以Y2O3为烧结助剂制备AlN陶瓷。闪光法测试AlN陶瓷在室温~200℃的温度关系。结果表明,AlN陶瓷热导率随温度升高而降低;气孔对AlN陶瓷热导率随温度变化的速率有抑制作用,气孔率越小(致密度越高),热导率对温度变化越敏感;AlN陶瓷钇铝酸盐晶界相含量对热导率随温度变化的速率有促进作用,钇铝酸盐含量越高,热导率对温度变化越敏感。  相似文献   

3.
如何获得理想的氮化铝陶瓷是电子陶瓷材料研究领域的重要课题。本研究采用纳米复合添加剂Y2O3-La2O3,分别在1600℃、1650℃、1700℃、1750℃和1800℃下,无压烧结氮化铝陶瓷。测定并分析了AlN陶瓷的性能和微观结构。实验结果表明:烧结温度达到1750℃,就可获得致密烧结,此时AlN晶粒细小均匀,第二相Al2Y4O9、LaAlO3和Y2O3分布在AlN晶界,AlN晶粒内的氧含量很低,AlN陶瓷样品的热扩散率较高。  相似文献   

4.
空心阴极等离子烧结AlN陶瓷   总被引:1,自引:0,他引:1  
将空心阴极效应运用于AlN陶瓷的烧结,选用自蔓延高温合成的AlN粉体为原料,用Y2O3-CaO-Li2O作为烧结助剂,制备出了致密度高,导热性能好的AlN陶瓷.在添加5.5wt%的Y2O3-CaO-Li2O(Y2O3:Li2O:CaO=44:6:5wt%)作为烧结助剂,在1700℃,保温3h的烧结条件下,获得相对密度为98.89%,热导率为93.8 W/(m·K)AlN烧结体.烧结体的断口SEM照片显示烧结试样的晶粒生长发育完善,晶粒轮廓清晰呈尖锐的多面体形状,晶粒大小均匀,气孔和晶界相少,断裂模式为穿晶断裂.TEM表明:晶界相少,且大部分都缩至三角晶界,AlN颗粒与颗粒接触紧密.  相似文献   

5.
微波低温烧结制备氮化铝透明陶瓷   总被引:4,自引:0,他引:4  
微波烧结(Microwave Sintering)是一种新型、高效的烧结技术, 具有传统烧结技术无可比拟的优越性. 本文在不添加任何烧结助剂的前提下, 采用高纯微米级氮化铝(AlN)粉, 在1700℃/2h的微波低温烧结工艺条件下制备出透明度较高的AlN透明陶瓷. 分析结果表明, 采用微波低温烧结工艺制备的AlN透明陶瓷晶粒尺寸细小(<10μm), 晶粒发育完善且分布均匀, 晶界平直光滑且无第二相分布, 从而证明用微波烧结可以实现AlN透明陶瓷的低温烧结.  相似文献   

6.
以直接氮化法合成的AlN微米粉为原料,添加3%(质量分数)的CaC2为烧结助剂,在5GPa的压力下烧结30min,考察不同烧结温度对AlN陶瓷热导率的影响。用阿基米德排水法、XRD、SEM等技术手段对AlN烧结体进行性能检测。研究表明,在1500~1800℃范围内,温度的升高能促使AlN陶瓷内部晶粒长大,晶型饱满,尺寸均一,晶界相减少,实现烧结致密化,利于热导率的提高。  相似文献   

7.
在微米氮化铝粉体中添加含量为4%的Y2O3和不同含量的纳米AlN粉体制备氮化铝陶瓷,研究了Y2O3和纳米AlN协同作用对微米氮化铝陶瓷烧结性能和热传导性能的影响。结果表明,Y2O3优先与纳米AlN粉体表面的Al2O3反应生成活性较高的第二相Al5Y3O12,相比于Y2O3与微米AlN粉体表面Al2O3反应生成的Al5Y3O12,具有更低的熔化温度及更好的流动性;同时,纳米AlN粉体的高比表面能也促进氮化铝陶瓷的致密化进程。二者的协同作用有效地促进氮化铝陶瓷的致密烧结,改善第二相的微观分布,从而能在较低的烧结温度下获得具有较高热导率的氮化铝陶瓷。当Y2O3和纳米AlN粉体的添加量(质量分数)分别为4%和1.5%时,在1800℃烧结得到的氮化铝陶瓷密度为3.26 g·cm-3,第二相以连续相的形式分布于氮化铝晶界处,热导率为151.75 W/(m.K)。  相似文献   

8.
研究了低温烧结助剂Li2O对SPS烧结AlN陶瓷烧结致密化过程、烧结体显微结构和导热性的影响.研究表明:在SPS烧结过程中,烧结助剂Li2O和Sm2O3(或Y2O3)的加入使AlN试样开始收缩并进入烧结初期阶段的温度从1550℃左右下降到1200℃以下;同时Li2O使AlN试样的烧结温度显著降低,完全致密化温度降低到1650℃左右.烧结体的显微结构表明:Li2O的加入有助于形成润湿性良好的液相,促进AlN陶瓷的液相烧结;但不利于快速烧结坯体中气体的扩散与逸出,使试样的致密度受到影响.同时,Li2O影响AlN晶粒的发育,使液相润湿性提高,晶界相均匀分布,增加了晶粒界面上的声子散射,对AlN材料的热导率产生不利影响.同时,添加1.0wt%Li2O和1.5wt%Sm2O3的AlN试样的热导率低于仅添加1.5wt%Sm2O3的试样.  相似文献   

9.
以AlN粉末为原料, 添加稀土氧化物(Sm2O3、Y2O3), 在氮气气氛下, 采用SPS烧结方法制备AlN陶瓷, 研究稀土氧化物的掺杂对AlN烧结试样相组成、微观结构和电性能的影响。实验表明: Sm2O3、Y2O3与Al2O3反应生成的液相稀土金属铝酸盐会提高AlN陶瓷致密度, 且在晶界处形成导电通路降低了AlN陶瓷电阻率。随着Sm2O3掺杂量的增加, 晶界相逐渐由Sm4Al2O9过渡到SmAlO3, 且Sm4Al2O9对电阻率贡献最大。其中, 3wt% Sm2O3掺杂AlN陶瓷电阻率最低, 为   相似文献   

10.
研究了传统烧结与热压烧结对ZnO压敏陶瓷显微结构和电性能的影响.采用扫描电镜观察(SEM)、电流-电压测试(I-V)、电容-偏压测试(C-V)以及阻抗谱等分析方法或测试手段研究了陶瓷的显微结构、电性能.结果表明,热压烧结增大了ZnO压敏陶瓷的烧结密度,提高了电性能.晶界特性参数测试结果表明,热压烧结还可以增强晶界特性.  相似文献   

11.
用六面顶压机研究了AlN微米粉体高压(2.0~6.0 GPa)下晶粒演化行为, 用 X 射线衍射仪和扫描电子显微镜对高压样品的物相组成、晶粒尺寸以及微观形貌进行了表征. 结果表明, 在室温下, AlN压制体的相对密度随着压力的升高也相应增加, 开气孔率则呈下降趋势. 经6.0 GPa压制后样品的相对密度达到88.72%, 出现了“冷烧结”现象. 高压作用后AlN微米晶的粒径变小, 压力从常压升高到6.0 GPa时微粉的平均粒径由2.10 μm下降到1.47 μm, 存在明显的压制碎化效应. 该效应提高了AlN粉体的表面自由能, 增强了粉体烧结的驱动力; 另一方面, 由于AlN粉末产生了一定的位错、裂纹等缺陷, 还可以起到活化烧结的作用, 提高AlN陶瓷的烧结速率.  相似文献   

12.
Raman光谱是研究纳米TiO2结构的最常用工具之一.纳米T2O2的Raman光谱研究是建立在以前对TiO2体材料的Raman光谱研究的基础之上.但是纳米TiO2与体相材料的表面性质和结构有较大的不同,其Raman光谱会产生明显变化.研究人员对纳米TiO2的Raman光谱已展开研究.本文概述了晶粒大小、结构、氧空位、退火温度、压力、相组成等因素对纳米TiO2的Raman光谱的影响.  相似文献   

13.
TiN、AlN弥散相强韧化Al2O3基复合材料的工艺研究   总被引:3,自引:0,他引:3  
在N2保护下,采用反应烧结制得TiN、AlN弥散相强韧化A12O3基复合材料。用SEM和X射线衍射法分析了试样的成分分布和显微结构,发现用该技术制备的复合陶瓷材料中,含有纳微米混合分布的AlN晶粒。通过测试试样的密度和各项力学性能,可以看出TiN、AlN弥散相强韧化Al2O3基复合材料有较为明显的效果。本文重点分析了制备工艺和成分配比对复合材料性能的影响。  相似文献   

14.
本工作主要研究了残余相和晶粒尺寸对碳化硅的抗混酸(HF-HNO3)腐蚀特性。通过不同的烧结方法(固相烧结、液相烧结、反应烧结)制备出残余相不同的碳化硅材料。结果表明: 与液相烧结碳化硅(LPS SiC)和反应烧结碳化硅(RB SiC)相比, 固相烧结碳化硅(SSiC)具有更好的腐蚀抗性, 这是由于残余相石墨的抗腐蚀性强, 以及残余相在材料中形成不能相互联通的岛状结构。通过调节碳化硅的烧结温度, 可以影响材料中的晶粒尺寸, 研究结果发现相同烧结温度下随着残余相含量的增加, 材料腐蚀失重线性增加, 对曲线进行线性拟合, 其Y轴截距的绝对值代表不含碳的试样在该烧结温度下的腐蚀失重。研究表明随着烧结温度由2100℃升高到2160℃, 晶粒尺寸由2 μm增加到6 μm。此时其Y轴截距的绝对值分别为9.22(2100℃), 5.81(2130℃), 0.29(2160℃), 表明晶粒尺寸的增加有利于提高材料的抗腐蚀能力。  相似文献   

15.
氧化钇部分稳定的氧化锆(YSZ)涂层是应用广泛的热障涂层材料。为了更好地研究各种因素对热障涂层热导率的影响, 使用压制烧结的方法制备基本致密的氧化锆陶瓷, 研究相组成和晶粒大小对热导率的定量影响。在不同的烧成制度下制备出不同晶粒大小的氧化锆陶瓷。用电子背散射衍射(EBSD)图像研究氧化锆陶瓷材料的相组成以及晶界的分布情况。综合有限元模拟的方法以及傅立叶传导方程, 计算出四方相和晶界的热导率分别为2.65 W/(m·K)和1.54 W/(m·K)。研究表明, 四方相的热导率比氧化锆陶瓷的热导率高, 而晶界的热导率比氧化锆陶瓷的低。  相似文献   

16.
本文采用溶胶 凝胶法制备二氧化钛纳米微粒。用XRD分析了二氧化钛胶体经不同温度热处理后的晶粒粒径。分析表明温度在 4 73K时TiO2 微粒呈锐钛矿结构 ,粒径约为 5 5nm。在 6 73K以上TiO2 粒径迅速增大 ,微粒出现锐钛相与金红石相混晶结构。 973K时TiO2 微粒完全转化为金红石相。用晶界结构弛豫的观点解释粒径随热处理温度变化关系  相似文献   

17.
王旭东  白彬 《材料导报》2016,30(Z2):121-126
晶界相对氮化硅陶瓷性能有重要作用,研究晶界相的性能对断裂韧性、高温强度的提高有重要意义。介绍了氮化硅陶瓷的显微结构、性能和应用,重点评述了氮化硅陶瓷晶界相的形成、特点、影响因素以及晶界相对力学性能和摩擦磨损性能的影响。提出了当前研究中存在的问题,并展望了未来氮化硅的研究方向。  相似文献   

18.
Abstract

Dense aluminium nitride ceramics were prepared by spark plasma sintering at a lower sintering temperature of 1700°C with Y2O3, Sm2O3 and Dy2O3 as sintering additives respectively. The effects of three kinds of sintering additives on the phase composition, microstructure and thermal conductivity of AlN ceramics were investigated. The results showed that those sintering additives not only facilitated the densification via the liquid phase sintering mechanism, but also improved thermal conductivity by decreasing oxygen impurity. Sm2O3 could effectively improve thermal conductivity of AlN ceramics compared with Y2O3 and Dy2O3. Observation by scanning electron microscopy showed that AlN ceramics prepared by spark plasma sintering method manifested quite homogeneous microstructures, but AlN grain sizes and shapes and location of secondary phases varied with the sintering additives. The thermal conductivity of AlN ceramics was mainly affected by the additives through their effects on the growth of AlN grain and the location of secondary phases.  相似文献   

19.
(YCa)F3助烧AlN陶瓷的显微结构和热导率   总被引:2,自引:0,他引:2  
采用(CaY)F_3为助烧结剂,低温烧结(1650℃, 6h)制备出热导率为208W/m·K的AIN陶瓷,在烧结过程中,热导率随保温时间的变化服从方程:λ(t)=λ∞-△λ(0)·e~(-t/r)·用SEM、 SThM、 TEM和 HREM对 AIN陶瓷的显微结构及其对热导率的影响进行了研究,结果表明,晶粒尺寸对AIN陶瓷热导率的影响可以忽略,而分隔在AIN晶粒之间的晶界相会降低热导率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号