首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Fatigue crack initiation and subsequent short crack growth behaviour of 2014-5wt%SiC aluminium alloy composites has been examined in 4-point bend loading using smooth bar specimens. The growth rates of long fatigue cracks have also been measured at different stress ratios using pre-cracked specimens. The distributions of Sic particles and of coarse constituent particles in the matrix (which arise as a result of the molten-metal processing and relatively slow cooling rate) have been investigated. Preferential crack initiation sites were found to be Sic-matrix interfaces, Sic particles associated with constituent particles and the coarse constituent particles themselves. For microstructurally short cracks the dispersed SiC particles also act as temporary crack arresters. In the long crack growth tests, higher fatigue crack growth rates were obtained than for monolithic alloys. This effect is attributed to the contribution of void formation, due to the decohesion of Sic particles, to the fatigue crack growth process in the composite. Above crack depths of about 200 μm “short” crack growth rates were in good agreement with the long crack data, showing a Paris exponent, m= 4 in both cases. For the long crack and short crack growth tests little effect of specimen orientation and grain size was observed on fatigue crack growth rates, but, specimen orientation affected the toughness. No effect of stress ratio in the range R=0.2-0.5 was seen for long crack data in the Paris region.  相似文献   

2.
The building of Inconel 625 material was carried out using the selective laser melting method, and its fatigue crack growth property at ambient temperature was experimentally investigated. Compact‐tension specimens with different building orientations were utilized to determine the stress intensity factor threshold and fatigue crack growth rate curves at different stress ratios (R). The results indicated that the fatigue crack growth properties in the near threshold stress intensity factor and Paris regions were greatly affected by the loading factor, as well as the orientation of the alloy. The mechanism of fatigue crack growth at different stages was observed and discussed using scanning electron microscopy. Finally, based on the framework of the linear elastic fracture, a new and applicable effective driving force factor range was introduced to replace the traditional stress intensity factor range (ΔK) with good accuracy for all of the fatigue crack growth test data, considering both the stress ratio and orientation.  相似文献   

3.
The fatigue crack growth behaviour of hybrid S2‐glass reinforced aluminium laminates (Glare) with multiple open holes was investigated experimentally and analytically. It was observed that the presence of multiple‐site fatigue damage would increase crack growth rates in the metal layers as two propagating cracks converged. An analytical crack growth model was established for predicting crack growth rates based on empirical Paris equation. The effective stress intensity factor at crack tips is a function of mode I far‐field stress intensity factor, crack opening stress intensity factor and effective non‐dimensional stress intensity factor that incorporated the crack‐bridging effect in fibre metal laminates. The predicted results under different applied stress can capture the trend of averaged crack growth rates in experiments, although deviation exists in the predictions.  相似文献   

4.
Different pearlite interlamellar spacings of 0.54 % carbon (C) wheel steel were obtained by heat treatment, and the influence of interlamellar spacing on fatigue behavior of the steel was studied through conducting the staircase method fatigue testing and decreasing/increasing stress intensity factor range (ΔK) fatigue crack growth tests. The results indicate that the fatigue endurance limit and fatigue threshold with smaller interlamellar spacing are higher than those with larger one, which can be well explained by dislocation slipping theory. Furthermore, the fatigue crack growth rates in the near-threshold and Paris regions were found to reduce with decreasing the interlamellar spacing. The decreased growth rate is attributed to the deflected crack path induced crack closure effect, as evidenced by fatigue steps on the fatigue fracture surface. The present results show how to enhance the fatigue property of wheel steel through refining the pearlite interlamellar spacing.  相似文献   

5.
An investigation of the fatigue crack growth (FCG) behavior of PWA 1480 single crystal nickel base superalloy was conducted. Typical Paris region behavior was observed above a δK of 8 MPa√m. However, below that stress intensity range, the alloy exhibited highly unusual behavior. This behavior consisted of a region where the crack growth rate became essentially independent of the applied stress intensity. The transition in the FCG behavior was related to a change in the observed crack growth mechanisms. In the Paris region, fatigue failure occurred along {111} facets, however at the lower stress intensities, (001) fatigue failure was observed. A mechanism was proposed, based on barriers to dislocation motion, to explain the changes in the observed FCG behavior. The FCG data were also evaluated in terms of a recently proposed stress intensity parameter, Krss. This parameter, based on the resolved shear stresses on the slip planes, quantified the crack driving force as well as the mode I ΔK, and at the same time was also able to predict the microscopic crack path under different stress states.  相似文献   

6.
Fatigue crack growth of AA2219 under different aging conditions   总被引:1,自引:0,他引:1  
The fatigue crack growth of commercial AA2219 has been examined under different aging treatments, namely, naturally aged (NA), under aged (UA), peak aged (PA) and over aged (OA) conditions. From the near threshold stress intensity range (ΔKNTH), the alloy in the NA condition is found to have the highest resistance to fatigue crack initiation. The crack growth rate increases and the near threshold stress intensity range decreases with advancing aging. This observation is found to be consistent with lower levels of crack closure and decreasing levels of tortuosity in crack path for PA and OA tempers. The inhomogeneous transcrystalline slip in the UA condition results in the slower crack growth at low stress intensity range (ΔK). The fracture morphology changes from crystallographic facets near the threshold region to clearly developed ductile striations in the Paris power-law regime to microvoid coalescence in the high ΔK regions.  相似文献   

7.
Fatigue thresholds and fatigue crack growth (FCG) rates in corner notched specimens of a forged Ti–6Al–4V aero-engine disk material were investigated at room temperature and 350 °C. The threshold stress intensity range, ΔKth, was determined by a method involving a step change in stress ratio (the ‘jump in’ method). It was found that for three high stress ratios (R=0.7–0.9), where crack closure effects are widely accepted to be negligible, there were similar ΔKth values at room temperature and 350 °C under the same R. For a given temperature, ΔKth was observed to decrease from 3.1 to 2.1 MPam with R increasing from 0.7 to 0.9. The fatigue crack growth rate was influenced by increasing temperature. For high stress ratios, FCG rate at 350 °C was higher than that at room temperature under the same ΔK. For a low stress ratio (R=0.01), higher temperature led to higher FCG rates in the near-threshold regime, but showed almost no effect at higher ΔK. The influence of stress ratio and temperature on threshold and FCG rates was analysed in terms of a Kmax effect and the implication of this effect, or related mechanisms, are discussed. In light of this, an equation incorporating the effects of the Kmax and fatigue threshold, is proposed to describe FCG rates in the near-threshold and Paris regimes for both temperatures. The predictions compare favourably with experimental data.  相似文献   

8.
Fatigue crack propagation in microcapsule-toughened epoxy   总被引:2,自引:0,他引:2  
The addition of liquid-filled urea-formaldehyde (UF) microcapsules to an epoxy matrix leads to significant reduction in fatigue crack growth rate and corresponding increase in fatigue life. Mode-I fatigue crack propagation is measured using a tapered double-cantilever beam (TDCB) specimen for a range of microcapsule concentrations and sizes: 0, 5, 10, and 20% by weight and 50, 180, and 460 μm diameter. Cyclic crack growth in both the neat epoxy and epoxy filled with microcapsules obeys the Paris power law. Above a transition value of the applied stress intensity factor ΔK T, which corresponds to loading conditions where the size of the plastic zone approaches the size of the embedded microcapsules, the Paris law exponent decreases with increasing content of microcapsules, ranging from 9.7 for neat epoxy to approximately 4.5 for concentrations above 10 wt% microcapsules. Improved resistance to fatigue crack propagation, indicated by both the decreased crack growth rates and increased cyclic stress intensity for the onset of unstable fatigue-crack growth, is attributed to toughening mechanisms induced by the embedded microcapsules as well as crack shielding due to the release of fluid as the capsules are ruptured. In addition to increasing the inherent fatigue life of epoxy, embedded microcapsules filled with an appropriate healing agent provide a potential mechanism for self-healing of fatigue damage.  相似文献   

9.
The micromechanisms of fatigue crack propagation in a forged, polycrystalline IN 718 nickel-based superalloy are evaluated. Fracture modes under cyclic loading were established by scanning electron microscopy analysis. The results of the fractographic analysis are presented on a fracture mechanism map that shows the dependence of fracture modes on the maximum stress intensity factor, Kmax, and the stress intensity factor range, ΔK. Plastic deformation associated with fatigue crack growth was studied using transmission electron microscopy. The effects of ΔK and Kmax on the mechanisms of fatigue crack growth in this alloy are discussed within the context of a two-parameter crack growth law. Possible extensions to the Paris law are also proposed for crack growth in the near-threshold and high ΔK regimes.  相似文献   

10.
Interfacial fatigue crack growth in foam core sandwich structures   总被引:1,自引:0,他引:1  
This paper deals with the experimental measurement of face/core interfacial fatigue crack growth rates in foam core sandwich beams. The so-called ‘cracked sandwich beam’ specimen is used, slightly modified, which is a sandwich beam that has a simulated face/core interface crack. The specimen is precracked so that a more realistic crack front is created prior to fatigue growth measurements. The crack is then propagated along the interface, in the core material, during fatigue loading, as is assumed to occur in a real sandwich structure. The crack growth is stable even under constant amplitude testing. Stress intensity factors are obtained from the FEM which, combined with the experimental data, result in standard da/dN versus ΔK curves for which classical Paris’ law constants can be extracted. The experiments to determine stress intensity factor threshold values are performed using a manual load-shedding technique.  相似文献   

11.
A fracture-mechanics based model is proposed for fatigue crack growth in fiber-reinforced metal-matrix composites (MMCs). The model incorporates most of the fracture micromechanisms commonly observed in fiber-reinforced MMCs, including (1) formation of microcracks ahead of the crack tip by either fiber fracture or interface decohesion, (2) interactions of the main crack tip with fibers and microcracks, (3) linkage of the main crack with microcracks, and (4) crack deflection by fibers. Statistical variations of fiber or interface strength are also considered. The essential feature of the model is to compute the changes in the local stress intensity due to various fracture mechanisms; the local stress intensity is then utilized to predict crack growth rate in MMCs via an elastic modulus normalization procedure. Application of the model to predicting crack growth in an alumina fiber Mg-alloy composite is presented.  相似文献   

12.
Small fatigue crack growth behaviour in a low alloy steel was investigated under two stress step multiple loading in which the secondary stress was below the fatigue limit. Crack growth rates were presented in terms of a stress intensity factor and compared with data obtained under constant amplitude loading. In the higher ΔK region, crack growth rates increased monotonously with increasing ΔK even though the stress level was below the fatigue limit, and tended to be lower than those for constant amplitude loading. In the lower ΔK region, cracks showed a complicated behaviour, that is, an initial high growth rate was observed followed by an arrest or a drop to a minimum value and then a gradual increase. The average crack growth rates per cycle at both primary and secondary stresses in each block were approximately consistent with the da/dnK relation for constant amplitude loading. A suggestion for the prediction of crack growth life is given.  相似文献   

13.
Stress fractures stem from the initiation and propagation of fatigue cracks through bone, and fatigue damage may play a role in many other orthopaedic problems, such as hip fractures in the elderly. The objective of this investigation was to measure fatigue crack propagation rates in cortical bone. Specific aims were to determine fatigue crack growth rate, da/dN, as a function of alternating stress intensity factor, K, for equine third metacarpal cortical bone tissue; to determine whether the resulting data followed the Paris law; and to test the hypothesis that crack growth rates differ between dorsal and lateral regions. Compact type specimens oriented for transverse crack growth were subjected to fatigue under Mode I loading. The da/dN vs. K data for the dorsal specimens revealed a Paris law exponent of 10.4 (R 2 = 0.82), comparable to that for ceramics. These data also exhibited an apparent threshold stress intensity factor of 2.0 MPa · m1/2. It was not possible to obtain similar results for lateral specimens because all cracks deviated from the desired transverse path and ran longitudinally in spite of the use of side grooves to constrain the crack path. However, the results for lateral specimens were not due to a failure of the test method, but reflect dramatic differences in fatigue crack propagation resistance between the two cortical regions. These results are consistent with clinical observations that stress fractures in the third metacarpus typically occur in the mid-diaphysis of the dorsal cortex, but not in the lateral cortex.  相似文献   

14.
The fatigue crack growth behaviors of Laser formed and ingot metallurgy (IM) Ti–6Al–4V alloys were studied in three environments: vacuum, air and 3.5% NaCl solution. Taking the Unified Fatigue Damage Approach, the fatigue crack growth data were analyzed with two intrinsic parameters, stress intensity amplitude ΔK and maximum stress intensity Kmax, and their limiting values ΔK* and . Fatigue crack growth rates da/dN were found increase with stress ratio R, highest in 3.5% NaCl solution, somewhat less in air and lowest in vacuum, and higher in IM alloy than in Laser formed one. In 3.5% NaCl solution, stress corrosion cracking (SCC) was superimposed on fatigue at R=0.9 for where Kmax>KISCC, the threshold stress intensity for SCC. This and environment-assisted fatigue crack growth were evidenced by the deviation in fatigue crack growth trajectory (ΔK* vs. curve) from the pure fatigue line where . Furthermore, the fractographic features, identified along the trajectory path, reflected the fatigue crack growth behaviors of both alloys in a given environment.  相似文献   

15.
The fatigue crack growth behavior of γ-based titanium aluminides (TiAl) with a fine duplex structure and lamellar structure has been investigated by scanning electron microscope (SEM) in situ observation in vacuum at 750°C and room temperature. For the duplex structured material the fatigue crack growth rates are dominated by the maximum stress intensity, particularly at 750°C. The threshold stress intensity range for fatigue crack growth at 750°C is lower than that at room temperature for any corresponding stress ratio. The fatigue crack growth rate at 750°C is affected by creep deformation in front of the crack tip. The severe crack blunting occurs when the stress ratio is 0.5. For the lamellar structured material the scatter of fatigue crack growth data is very large. Small cracks propagate at the stress intensity range below the threshold for long fatigue crack growth. The effects of microstructure on fatigue crack growth are discussed.  相似文献   

16.
The fatigue crack growth behavior of an austenitic metastable stainless steel AISI 301LN in the Paris region is investigated in this work. The fatigue crack growth rate curves are evaluated in terms of different parameters such as the range of stress intensity factor ΔK, the effective stress intensity factor ΔKeff, and the two driving force parameter proposed by Kujawski K1.The finite element method is used to calculate the stress intensity factor of the specimens used in this investigation. The new stress intensity factor solution has been proved to be an alternative to explain contradictory results found in the literature.Fatigue crack propagation tests have been carried out on thin sheets with two different microstructural conditions and different load ratios. The influence of microstructural and mechanical variables has been analyzed using different mechanisms proposed in the literature. The influence of the compressive residual stress induced by the martensitic transformation is determined by using a model based on the proposal of McMeeking et al. The analyses demonstrate the necessity of including Kmax as a true driving force for the fatigue crack growth. A combined parameter is proposed to explain the effects of different variables on the fatigue crack growth rate curves. It is found that along with residual stresses, the microcracks and microvoids are other factor affecting the fatigue crack growth rate in the steel studied.  相似文献   

17.
The fatigue crack growth rate behaviour of a Co-33 wt pct Ni alloy was investigated at room temperature down to the threshold regime using CT specimens for two load ratios 0.1 and 0.3. Cyclic equivalent plastic strain distributions along an axis normal to the crack plane were experimentally determined over the whole range of crack growth rates using two techniques microhardness and a quantitative metallographic technique applied to twins, both calibrated on low cycle fatigue specimens. These experimental values were compared with theoretical curves as obtained from the monotonic plane strain finite element analysis of Tracey and adapted to cyclic loading according to the procedure proposed by Rice. A good agreement was found in stage II crack growth in the vicinity of the crack tip but a discrepancy was observed in the low crack growth rate regime, indicative of crack closure. It was possible to determine the effective amplitude of the stress intensity factor which accounts for this discrepancy and an intrinsic crack growth law was obtained which obeys Paris equation and which applies in the whole crack growth rate range independently of the load ratio.  相似文献   

18.
Abstract— Initial fatigue crack propagation mechanisms at near threshold conditions were studied for four nickel-alloyed, powder-metallurgy (PM) steels. Fatigue fracture surfaces were obtained by testing smooth rectangular specimens at 30 Hz and under constant amplitude and zero mean stress conditions. Materials based on Distaloy AE were used in two densities, namely 7.15 and 7.45 g/cm3.
All the fracture surfaces were composed of three morphological regions (i) a macrocrack initiation region Rl where cracks propagated preferentially through particles (ii) a macrocrack growth region R2 and (iii) an unstable crack growth region R3 where cracks propagated preferentially between particles. Initial fatigue crack growth, in region R1, was controlled by the propagation of short cracks whose dimensions were comparable to the material microstructure. The subsequent fatigue crack growth in regions R2 and R3 was controlled by ductile rupture between microvoids. Transparticle fracture in region R1 was independent of pore distribution, while interparticle fracture in regions R2 and R3 was dependent on pore distribution.  相似文献   

19.
A study has been made of fatigue crack nucleation and propagation in Al-stainless steel (30 vol%) laminate composites. A Paris type power relationship between the crack growth rate, da/dN, and the alternating stress intensity, K, was obtained over the crack growth rates ranging from 10–7 to 10–4 mm/cycle, with an exponentm of 2.7. The cracks nucleated first in Al strips and then in stainless steel strips accompanied by some interface decohesion. The fatigue crack propagated in two stages. In the first stage, where the Al-steel interface was largely intact, the crack propagated in a plane strain mode (flat fracture surface with striations, each striation consisting of a cluster of interstriations). In the second stage, where there occurred extensive Al-steel interface delamination and the concomitant loss of mutual constraint, the crack propagated in the plane stress mode (slant fracture with voids). The crack growth was faster in Al than that in steel since the apparent striation spacing was larger in the former than in the latter. No one to one correspondence existed between the apparent striation spacing and the macroscopic crack growth rate.Thus, although, microscopically, the crack front was not planar; macroscopically, it could be regarded as planar, and a Paris type power relationship did characterize the macroscopic fatigue crack growth in this laminate system over the applied stress amplitude studied. Comparing the fatigue crack growth rates among Al-steel laminate, commercial or pure aluminium and 304 stainless steel, the Al-steel laminate has the lowest crack growth rate. This plus the weight and cost saving benefits make Al-steel laminate quite attractive.  相似文献   

20.
The growth of cracks under far-field cyclic compressive loading in aluminium-lithium (Al-Li) alloys reinforced with SiC particulates is investigated in notched compact tension specimens (CT). When cracks were initiated from the root of the notch, progressive deceleration occurred with the initial crack growth being largest. After crack arrest, analysis indicated that the initial residual stress diminished as the crack became non-propagating and at arrest the crack faces appeared to be open. When the crack closure loads were determined, it was shown that not all the stress amplitude produced crack growth and opening. This effect of crack closure was enhanced for small stress fields when the effective stress intensity dropped to the fatigue threshold of the alloy. For large residual stress fields the effective stress intensity range was well above the threshold and the initial crack growth rates were largest in the alloy containing the reinforcement particles. A residual strain model was used to determine the residual stress introduced in the root of the notch from the first compressive preload. It is shown that the fatigue crack growth was confined to a region of tensile stress within the residual stress field and the initial crack propagation rates were enhanced by the presence of the reinforcement. A dependence of the stress magnitude on growth rates was also established — the greater the residual stress at the root of the notch the larger the growth rates. The reinforcement had an additional amplification effect in terms of tensile distance from the notch. The effective stress intensity range, K, was investigated using compliance measurements and a model is introduced which explains the underlying features and mechanism of accelerated growth in both alloys, taking into account the reinforcement phase, plastic zone-size dependence and the residual stress field of the MMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号