首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
邱庆龄 《功能材料》2020,(3):3082-3088
以十二烷基苯磺酸钠(SDBS)作为分散剂,多层石墨烯、TiO2/石墨烯(m(TiO2):m(石墨烯)=25∶75)和TiO2颗粒作为导热添加剂,加入到二元复合有机储冷材料中(m(壬酸):m(葵醇)=60:40),制备了复合相变储冷材料。通过吸光度、DSC和热导率测试等手段,对复合相变储冷材料的稳定性、相变温度、相变潜热及热导率进行了评价分析。结果表明,分散剂和导热添加剂的加入,对储冷材料的相变温度和相变潜热影响不大,但对热导率影响较大。当分散剂SDBS浓度为0.2 g/L,导热添加剂(分别为TiO2/石墨烯和TiO2颗粒)浓度为0.5 g/L时,复合相变储冷材料具有较好的稳定性,其热导率分别为为0.2211和0.2096 W/(m·K),相比没有加入任何导热添加剂的储冷材料的热导率(0.1738 W/(m·K)),分别提高了27.22%和20.61%;当分散剂SDBS浓度为0.3 g/L,导热添加剂多层石墨烯浓度为0.3 g/L时,复合相变储冷材料处于稳定状态,其热导率为0.2268 W/(m·K),相比0.1738 W/(m·K),提高了30.49%。由此可知,多层石墨烯可以更有效地增加复合相变储冷材料的热导率,这主要是由于石墨烯具有非常高的比表面积,有利于复合材料更加均匀地分散以及形成更加完善的网格结构,从而有效增加复合相变储冷材料的稳定性及热导率。选用多层石墨烯为导热添加剂(0.3 g/L),SDBS为分散剂(0.3 g/L),可以制备出体系最稳定、热导率最高的复合相变储冷材料。  相似文献   

2.
黄绪德  刘欣 《材料导报》2021,35(z1):83-86
采用改进的Hummers法制备氧化石墨烯(Graphene oxide,GO),以环境友好和具有较强还原能力的茶多酚和维生素C为还原剂还原GO制备还原氧化石墨烯(Reduced graphene oxide,RGO).傅里叶变换红外光谱(FT-IR)测得还原后的RGO的含氧官能团吸收峰明显降低,在X射线衍射图谱(XRD)中观察到还原后的RGO的吸收峰位置的变化,原子力显微镜(AFM)观察到样品的厚度.这些表征数据表明实验采用的两种还原剂成功还原了GO制备出RGO.  相似文献   

3.
采用化学气相聚合法制备了聚-3,4-乙烯二氧噻吩(PEDOT)/还原氧化石墨烯(RGO)复合薄膜。首先用旋涂法制备氧化剂/氧化石墨烯(GO)薄膜,然后将薄膜置于3,4-乙烯二氧噻吩(EDOT)气相聚合装置中,形成PEDOT/GO复合薄膜。将获得的PEDOT/GO复合薄膜用葡萄糖还原剂进行处理,获得PEDOT/RGO复合薄膜。导电性测试表明,GO被还原后复合薄膜的电导率为35.3S/cm,明显高于PEDOT/GO(14.6S/cm)和纯PEDOT(17.3S/cm)薄膜的电导率。电化学特性研究表明,RGO的加入使得PEDOT/RGO导电聚合物复合纳米材料具有优良的电化学特性及稳定性,薄膜的比电容为176.7F/g。循环测试800次后,比容量保持率为84%,具有良好的电化学稳定性。这种化学气相聚合制备的聚合物复合纳米薄膜在超级电容器及导电材料领域有着很好的应用前景。  相似文献   

4.
采用液相吸附法制备了改性氧化石墨烯(m-GO)与硬脂酸(SA)复合相变材料m-GO/SA,然后将其与硅橡胶(SIR)混合成型制备出导热界面材料m-GO/SA/SIR,研究了m-GO/SA的添加量对硅橡胶导热界面材料的热性能和压缩弹性模量的影响。利用红外光谱(FTIR)和扫描电镜(SEM)对氧化石墨烯(GO)的改性机理与m-GO/SA的形貌进行表征,通过激光导热仪,差示扫描量热仪(DSC)和万能试验机考察了m-GO/SA/SIR的热导率,潜热值及压缩弹性模量。结果表明:添加20mL GO水溶液(10mg/mL)的m-GO/SA相变潜热可达到131.9J/g,加入50.0wt.%m-GO/SA的m-GO/SA/SIR热导率和相变潜热值分别可达到1.049W/m·K和49.9J/g。同时,相比于纯硅橡胶,界面材料的压缩弹性模量降低了86.8%。  相似文献   

5.
将不同比例的氧化石墨烯(GO)和硝酸银混合,采用水合肼一步还原制备石墨烯/纳米银(RGO/Ag)复合材料。采用UV-vis、XRD、FTIR和SEM对RGO/Ag复合材料结构组成进行表征分析,并结合热流量和结构变化研究其构成和热处理工艺对导电性的影响。结果表明:Ag基本以类似球形与石墨烯(RGO)复合;RGO/Ag复合材料的导电性与其构成有很大关系,只有当GO加入量小于50wt%时,Ag含量的提高和热处理工艺的优化可以明显改善复合材料的导电性,其中,GO加入量为16wt%的RGO/Ag片方阻值可达到8mΩ/□;当GO加入量高于50wt%时,复合材料导电性与RGO接近,受Ag含量的提高和热处理工艺优化的影响较小。  相似文献   

6.
先用Hummer法合成氧化石墨烯(GO),然后用熔融共混法制备了不同GO含量的聚对苯二甲酸丁二醇酯(PBT)纳米复合材料(PBT/GO)。随着GO含量的提高PBT/GO纳米复合材料的拉伸强度和冲击强度都先提高后降低,GO的含量为0.5%的材料性能最佳。将GO含量为0.5%的PBT/GO纳米复合材料在不同温度(150、180和200℃)热处理不同时间(30、60和90 min),研究了热处理对其结构和性能的影响。结果表明,随着热处理温度的提高PBT/GO纳米复合材料的拉伸强度和冲击强度最高达63.2 MPa和11.6 kJ/m2,比热处理前分别提高了36.1%和59.3%。而随着热处理时间的延长其拉伸强度和冲击强度最高分别为62.3 MPa和11.0 kJ/m2,分别提高了34.2%和51.9%。DSC分析结果表明,提高热处理温度和延长热处理时间都能提高复合材料的结晶度,结晶度比热处理前最多分别提高了11.4%和8.6%,温度对结晶度的影响更甚。XRD测试结果表明,热处理并不改变复合材料的晶型结构,只影响其结晶度。导热性能测试结果表明,复合料的结晶度越高则导热性能越好。提高热处理温度,复合材料在50℃和100℃的热导率最高分别为0.49 W/(m·K)和0.42 W/(m·K),比热处理前分别提高了24.1%和18.6%;延长热处理时间,复合材料在50℃和100℃的热导率最高分别为0.46 W/(m·K)和0.37 W/(m·K),比热处理前分别提高了14.6%和5.9%,热处理温度对导热性能的影响更显著。  相似文献   

7.
成功制备了石墨烯/聚苯胺/四氧化三锰(RGO/PANI/Mn_3O_4)纳米复合材料。首先,以过硫酸铵(APS)为氧化剂,在氧化石墨烯(GO)片层上氧化聚合苯胺单体,制备氧化石墨烯/聚苯胺(GO/PANI),再通过水热法将GO还原并热解Mn(Ac)_2·4H_2O从而制得RGO/PANI/Mn_3O_4复合材料。形貌和结构表征结果表明Mn_3O_4纳米颗粒均匀生长在以PANI为导电连接层的RGO片层上。  相似文献   

8.
针对有机相变材料热导率低的问题,以质量比71∶29的正辛酸(OA)-癸酸(CA)为基液,通过添加膨胀石墨(EG)制备用于医药冷藏运输系统的复合相变材料。利用EG表面多孔结构的吸附性原理,制备出EG最佳质量分数为8%的OA-CA/EG低温复合相变材料。通过差示扫描量热仪测得OA-CA/EG的相变温度为0.9℃,相变潜热为112.7J/g。利用热常数分析仪测得OA-CA的热导率为0.3231W/(m·K),OA-CA/EG的热导率为1.649W/(m·K),加入EG使得OA-CA的热导率提高了4.1倍。对OA-CA/EG进行100次蓄放冷循环实验,结果表明循环前后其相变温度、潜热值以及热导率均未发生明显变化。稳定的蓄放热性能使得OA-CA/EG在医药冷藏运输系统具有广阔的应用前景。  相似文献   

9.
为了提高复合相变储能材料的导热性能,以N,N,N-三甲基-1-十六烷基溴化铵(CTAB)改性剂,氧化石墨烯(GO)经有机化改性、还原反应制得功能化石墨烯(CTAB-RGO),并作为强化传热载体对癸酸-十二醇(CA-LA)共混物(相变储能材料)进行导热增强改性,获得新型石墨烯导热增强相变储能材料。结果表明,CTAB-RGO的加入提高了CA-LA相变复合材料的相变潜热、导热系数、热稳定性能等。添加1%CTAB-RGO复合材料的相变潜热为164.7 J/g,相对CA-LA混合物提高了22%;导热系数为高达0.94 W/(m·K),导热增强率为184%。  相似文献   

10.
采用水热法制备Ni_2CoS_4活性材料,通过物理过程和水热反应将其与氧化石墨烯(GO)、水热多孔氧化石墨烯(HHGO)复合得到Ni_2CoS_4/还原氧化石墨烯/多孔还原氧化石墨烯(Ni_2CoS_4/RGO/HRGO)复合电极材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、循环伏安测试、恒流充放电测试和交流阻抗测试等,对复合材料的形貌结构、电化学性能进行了表征。研究结果表明:在1 A/g的电流密度下,其比电容为1 684 F/g,在5 A/g的电流密度下循环2 000次后,其比电容保持率为91.8%。Ni_2CoS_4/RGO/HRGO优良的电化学行为归因于这种复合结构使电解液对电极材料的润湿程度提高,进而提高了离子和电荷的传输速率,同时也缓解石墨烯、Ni_2CoS_4的团聚和循环过程中的体积变化。因此,Ni_2CoS_4/RGO/HRGO是一种有良好应用前景的高性能超级电容器电极材料。  相似文献   

11.
为研究同一制备方法下石墨烯质量分数对不同聚合物导热性能和热稳定性的影响,通过熔融共混法制备了石墨烯/聚酰胺(GE/PA6)、石墨烯/聚丙烯(GE/PP)、石墨烯/高密度聚乙烯(GE/HDPE)3种聚合物复合材料。结果表明,石墨烯能有效提高3种聚合物导热性能,当填充石墨烯质量分数达到10%时,PA6导热系数从0.32 W/(m·K)提升至1.30 W/(m·K);GE/PP导热系数从0.37 W/(m·K)提升至1.15 W/(m·K)、GE/HDPE导热系数从0.62 W/(m·K)提升至1.13 W/(m·K)。对制备的石墨烯聚合物复合材料进行热重分析。将纯聚合物与石墨烯质量分数1%,5%,10%的石墨烯聚合物复合材料对比,PA6的热稳定性逐渐提升,PP、HDPE的热稳定性先降低后升高。  相似文献   

12.
使用天然植物多酚——单宁酸(TA)作为氧化石墨烯(GO)的还原剂,通过"一步法"实现了对GO的绿色还原和功能化.随后,将TA还原氧化石墨烯(RGO)和碳纳米管(SWCNT)结合起来,共同构筑具有三维结构的石墨烯/单壁碳纳米管(RGO/SWCNT)透明导电薄膜(TCFs).该薄膜有着良好的导电性(透光率为75.1%时,面...  相似文献   

13.
以硫酸钛为钛源、抗坏血酸为还原剂,以氧化石墨烯(GO)表面活性基团为结合位点,采用一步水热法还原得到二氧化钛/还原氧化石墨烯(TiO_2/RGO)纳米复合光催化剂。扫描电子显微镜分析表明TiO_2为球状颗粒,尺寸为80~100nm,均匀分布在透明薄纱状RGO表面和层间。比表面积(BET)和紫外-可见光漫反射(UV-Vis)测试表明,TiO_2/RGO纳米复合光催化剂的禁带宽度为3.02eV,比表面积为101m~2/g,平均孔径为6.61nm,对光的吸收由纯TiO_2的384nm扩展到410nm,具有较好的可见光响应性。亚甲基蓝(MB)光催化降解实验表明,在光照120min时MB的降解率可以达到97.8%,重复使用5次后,催化降解能力仍保持在95.2%。TiO_2/RGO纳米复合光催化剂具有可见光响应能力,高催化活性和稳定性,原因是RGO作为TiO_2的载体为电子和空穴提供了迁移通道,有效地防止了电子空穴对复合。  相似文献   

14.
通过水热法、火焰辅助微波法等控制氧化石墨烯(GO)的还原度,制备了一系列具有不同还原度的还原氧化石墨烯(RGO),并以这些RGO为前驱体,以六水氯化镍(NiCl2·6H2O)、2-巯基丙酸(C3H6O2S)为镍源和硫源,通过水热法合成了系列硫化镍/RGO(NS/RGO)复合材料。通过粉末X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)和电化学工作站对材料的晶型结构、形貌特征及电化学储能性能进行了研究。结果表明:RGO的还原度高低不仅显著地影响了NS的晶型结构,而且改变了NS的形貌特征;利用超过140℃水热还原获得的RGO制得的NS/RGO复合材料中NS晶型以Ni3S4主,且形貌由棒状变成了球状;尤其,利用140℃还原获得的RGO制备的NS/RGO具有最强的电化学储能能力,比电容高达3331.6F/g。可为下一代新型电极活性材料的设计和构筑提供新思路。  相似文献   

15.
柠檬酸钠绿色还原制备石墨烯   总被引:3,自引:1,他引:2  
采用环境友好型还原剂柠檬酸钠,成功实现了温和条件下氧化石墨(GO)的控制还原,制备得到了石墨烯材料.利用扫描电子显微镜(SEM)、X-射线衍射(XRD)、紫外可见吸收光谱(UV-vis)、傅立叶红外光谱(FT-IR)等对所得产物进行了分析表征,并研究比较了氧化石墨与氧化石墨烯还原产物(RGO)的电子输运性能.结果表明:柠檬酸钠可在温和条件F还原氰化石墨得到高质量的石墨烯.  相似文献   

16.
通过水热法, 利用氧化石墨烯(GO)和二价锰盐, 一步合成了还原氧化石墨烯/MnO2(RGO/M)复合电极材料。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱(RS)、傅里叶红外光谱(FTIR)和场发射扫描电镜(FESEM)等测试电极材料的物性, 通过循环伏安、交流阻抗和恒流充放电等方法研究电极材料的电化学性能。结果表明, 在一定水热反应条件下, 通过控制GO与二价锰盐配比, 可以调节RGO/M的结构及其电化学性能。在1 A/g电流密度下, 所得RGO/M复合电极的比电容可达277 F/g, 经过500次循环后, 保持率达到98%。  相似文献   

17.
分别以氧化石墨粉(GO)、还原氧化石墨烯乙醇悬浮液(RGO)和热法还原石墨烯粉(TRG)为填料,分散于酚醛树脂(PR)的乙醇溶液中,再将这些基体混合物涂覆于炭纤维(CF)布上,经热压成型工艺制备氧化石墨烯/酚醛树脂/炭纤维、还原氧化石墨烯乙醇悬浮液/酚醛树脂/炭纤维、热法还原氧化石墨烯/酚醛树脂/炭纤维层次复合材料。研究了GO、RGO和TRG对复合材料结构、压缩性能、弯曲性能及磨擦性能的影响。结果表明,与纯酚醛树脂/炭纤维复合材料相比,当纳米填料的质量分数仅为0.1%时,层次复合材料的压缩性能可显著提高,其中,热法还原氧化石墨烯/酚醛树脂/炭纤维的压缩强度和模量分别提高了178.9%,129.5%;弯曲性能也可得到一定的改善。还原氧化石墨烯乙醇悬浮液/酚醛树脂/炭纤维层次复合材料的最大储能模量可提高75.2%。所有改性石墨烯/酚醛树脂/炭纤维层次复合材料的Tg均有所降低。  相似文献   

18.
采用天然巴沙木作为原材料,进行选择性刻蚀,得到三维层状结构的木头海绵。以木头海绵为模板,在负载一定比例的还原氧化石墨烯(rGO)与石墨烯纳米片(GNP)后,通过真空浸渍的方法与环氧树脂复合并固化,制备得到石墨烯-木头海绵(G-WS)/环氧树脂复合材料。结果表明:采用真空浸渍的方法,能够成功使氧化石墨烯(GO)在水热还原的同时,带动GNP负载到木头海绵表面,同时GO被还原成为rGO,经过与环氧树脂复合后,在环氧树脂内部,G-WS仍然保持良好的三维结构,这种取向分层结构使复合材料具有导热的各向异性,三维连通的结构也为良好的热导率奠定了基础。当填料质量分数为1.45%时,沿取向结构方向的热导率能够达到1.59 W·m-1·K-1,相比于纯环氧树脂而言,热导率提升率高达457%。同时由于木头海绵内部层状的结构,赋予了G-WS良好的压缩回弹性能,能够实现80%压缩以及40%形变压缩,循环100次但不发生明显形变。  相似文献   

19.
本工作旨在探索石墨烯量子点及纳米铝对改善相变微胶囊热性能、悬浮液物理稳定性等特性的作用。以石蜡为芯材、三聚氰胺-甲醛-尿素树脂为壁材,采用原位聚合法制备了三个相变微胶囊样品,分别为不复合石墨烯量子点及纳米铝的样品、复合1.5%石墨烯量子点的样品、复合1.5%石墨烯量子点及7%(质量分数)纳米铝的样品。通过扫描电镜、粒度仪、热传导系数仪、差示扫描量热仪及静置法分别对相变微胶囊的外观、粒径分布、热导率、热物性以及相变悬浮液物理稳定性进行了表征与分析。结果表明,改性微胶囊成型良好,石墨烯量子点的加入有助于提高微胶囊粒径的均匀性,同时复合石墨烯量子点及纳米铝的微胶囊导热系数提高了254.55%,达到0.78 W/(m·K),包覆率提高至92.65%,且相变悬浮液实现了48 h不分层。  相似文献   

20.
为了制备兼具高相变潜热和高导热系数的膨胀石墨/石蜡(EG/PA)复合相变材料,使用真空浸渍法并通过碳纳米管(CNTs)掺杂对复合相变材料进行了改性。导热性能测试分析发现,当复合相变材料中石蜡质量分数较高时,CNTs掺杂可以有效地增强复合相变材料的导热系数,并且随着CNTs掺杂含量的提高复合相变材料的导热系数也逐渐增大,但是当CNTs掺杂量高于0.8%(质量分数)时导热系数增大速度变慢,因此优化的CNTs掺杂含量为0.8%(质量分数)。在此优化参数下,复合相变材料的熔化潜热从145.27 J/g变到144.39 J/g几乎没有变化,而导热系数从2.141 W/(m·K)提升至4.106 W/(m·K),提升了约1倍,并且在100次热循环之后仍然保持很好的储热能力,具有较好的热循环稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号