首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
以不饱和树脂和环氧树脂为基体,与三维中空织物分别复合成中空夹芯织物复合材料,利用万能材料试验机分别对2种复合材料的拉伸、压缩和弯曲性能进行测试,研究了树脂种类对复合材料力学性能的影响规律。结果表明:不饱和树脂与固化剂质量比为100∶2,固化温度为70℃时,复合材料具有最佳的拉伸、弯曲和压缩性能。环氧树脂基复合材料的弯曲和压缩性能远优于不饱和树脂基复合材料,而拉伸性能则相差不大。  相似文献   

2.
对高残碳酚醛进行了表征,运用正交实验方法研究了CBFTC/HCYPR复合材料的层压成型工艺.结果表明:高残碳酚醛具有较高的残碳率、较窄的分子量分布,适合做烧蚀复合材料基体;当预固化温度为140℃、固化温度为175℃、固化压力为5MPa、固化时间为7min/mm时,CBFTC/HCYPR复合材料的弯曲性能和烧蚀性能最好.  相似文献   

3.
以聚硅乙炔树脂(PMR)为基体制备出了一种新型的碳/聚硅乙炔基防热复合材料(C/PMR),并全面评价了树脂基体的固化性能、耐热性能、以及复合材料的界面性能、力学性能与烧蚀性能。结果表明:PMR固化物具有比酚醛更高的耐热稳定性,其在N2下的5%热失重温度(T5)为608℃,900℃下的残重高达89.7%(酚醛约65%)。复合后,C/PMR单向板的剪切强度为22MPa,织物增强型C/PMR的拉伸强度、弯曲强度和线烧蚀速率分别为187MPa、96MPa和0.46mm/s。  相似文献   

4.
为了分析增强体结构对复合材料力学性能和复合工艺的影响,分别以单向玄武岩织物和平纹玄武岩织物为增强体,制备玄武岩增强复合材料。并采用正交试验方法,讨论复合工艺参数对玄武岩增强复合材料拉伸强度和弯曲强度的影响,及其对两种复合材料的力学性能差异。结果表明:平纹玄武岩复合材料拉伸性能优于单向玄武岩复合材料,而单向玄武岩复合材料具有较强的抗弯性能;增强纤维含量对复合材料的拉伸性能影响较大,对单向玄武岩复合材料弯曲性能影响较小;复合成型温度对单向玄武岩复合材料力学性能影响较大,且成型温度升高有利于复合材料力学性能改善;成型压力增大有利于复合材料力学性能的增强;适当延长冷却时间有利于复合材料力学性能的提高。  相似文献   

5.
马豪  李岩  王迪  陆超 《材料工程》2015,(10):14-19
研究热压成型过程中,不同固化温度对亚麻纤维及其增强复合材料力学性能的影响。结果表明:亚麻纤维在120,140℃和180℃分别处理2h后单纤维拉伸性能发生不同程度的下降。环氧树脂E-51在120,140℃和180℃下固化2h后拉伸性能未发生明显变化。基于环氧树脂的单向亚麻纱线增强复合材料分别在120℃和140℃固化成型时,拉伸强度和冲击强度变化不大。但当固化温度达到180℃时,由于亚麻纤维在高温环境下损伤较为严重,其增强复合材料的拉伸强度和冲击强度均发生明显的下降。然而复合材料的拉伸模量随着成型温度的升高有一定幅度的提升。  相似文献   

6.
朱凯  沈超  杨岩 《材料工程》2011,(Z1):52-54
通过中温固化环氧树脂3238A分别增强炭纤维织物C305和G803,制作成为预浸料.两种预浸料在温度125℃,压力0.5MPa下经2h固化,成为层压板,3238A/C305与3238A/G803两种复会材料常规力学性能、高低温、湿热性能程疲劳性能进行比较.结果表明,3238A/C305复合材料性能略低.  相似文献   

7.
玄武岩纤维具有优秀的稳定性,良好的力学性能,以及环保和廉价等特点。采用冰醋酸对玄武岩纤维进行改性,并制得改性玄武岩纤维/天然橡胶复合材料。探讨了改性玄武岩纤维用量对橡胶复合材料的力学性能、热稳定性能的影响。结果表明:虽然添加改性玄武岩纤维降低了橡胶复合材料的力学性能,但可以有效降低橡胶复合材料的损耗因子;添加改性玄武岩纤维有利于提高橡胶复合材料的热稳定性;添加6份改性玄武岩纤维条件下纤维分布最理想,改性玄武岩纤维/天然橡胶复合材料的综合性能最优,130℃的损耗因子为0.029。  相似文献   

8.
在对含乙烯基聚硅氮烷(PSN1)树脂基本性能研究的基础上,以石英纤维布为增强材料,利用层压法制备了石英纤维布/含乙烯基聚硅氮烷耐高温透波复合材料(QF/PSN1),并对其在室温和高温下的力学性能及介电性能进行了测试与表征。研究结果表明:PSN1树脂工艺性能良好,黏度低于1 Pas(60~151℃),固化温度小于200℃;耐热性能优异,在N2和空气氛围下,其固化物失重5%时的温度均高于480℃、800℃时的残重均高于76%。QF/PSN1复合材料力学性能优异,弯曲强度和层间剪切强度随温度升高出现先下降后上升的趋势;450℃烘烤10 min后,其弯曲强度仍在120 MPa以上。QF/PSN1复合材料介电性能优异:在1~12 GHz范围内,QF/PSN1复合材料在室温~450℃范围内介电常数(ε)均低于3.2,介电损耗(tanδ)均小于0.01。上述研究结果表明:含乙烯基聚硅氮烷作为耐高温透波材料的新型树脂基体具有重要的应用价值。   相似文献   

9.
本文选择了氨酚醛树脂以及硼酚醛树脂为基体材料,玄武岩纤维为增强材料,制备了三种耐烧蚀复合材料。对材料进行了力学性能以及耐烧蚀性能试验,发现玄武岩纤维增强高分子量硼酚醛树脂复合材料力学性能以及耐烧蚀性能最优。通过对烧蚀后材料的表面形貌SEM分析以及表面粘附物能谱分析,简要阐述了酚醛树脂树脂基烧蚀复合材料的烧蚀机理。  相似文献   

10.
为满足工程领域对耐高温树脂基透波复合材料的需求,研究石英纤维(QF)增强新型含硅改性聚芳炔(PSA)树脂基复合材料(QF/PSA)的制备方法及其性能。首先对树脂的黏度进行分析,确定了树脂在不同温度和时间下的黏度变化预测模型,适宜的树脂传递模塑工艺(Resin Transfer Molding, RTM)注胶温度在70~100℃范围;对树脂固化过程中的放热量、红外光谱和流变特性进行分析,确定了树脂的固化温度和固化过程,在250℃可以实现树脂的固化。基于上述分析进行了复合材料的高质量制备,并进一步对复合材料的微观形貌、力学性能、热膨胀性能、介电性能和耐高温性能进行分析和试验验证。材料的玻璃化转变温度(Tg)大于500℃,5%热失重温度(T5%)高达625℃,石英灯试验表明耐高温能力可达520℃/1000 s;介电常数稳定在3.1~3.2,介电损耗稳定在0.003以下;力学性能满足功能材料的使用要求。上述研究表明,该新型含硅聚芳炔树脂基透波复合材料在航空航天领域具有重要的应用价值。   相似文献   

11.
采用三种不同结构玄武岩织物(单向/平纹/2.5维),通过树脂传递模塑成型工艺(RTM)制备了玄武岩织物增强环氧树脂复合材料。通过拉伸和弯曲试验,研究了织物结构对复合材料力学性能的影响,探讨了不同织物结构玄武岩织物增强环氧树脂复合材料的损伤破坏机制。结果表明:织物结构形式对复合材料的力学性能有较大影响,单向玄武岩织物复合材料的拉伸性能最好,试样的拉伸断口相对齐平,分层现象不明显;2.5维玄武岩织物复合材料弯曲性能最好,且纬向弯曲性能优于经向。2.5维织物增强复合材料的结构整体性较好,受到拉伸和弯曲载荷不会产生分层破坏。根据扫描电子显微镜(SEM)断面分析可以判定,玄武岩织物/环氧树脂复合材料拉伸和弯曲加载过程中的损伤类型主要为织物中纤维的断裂及纤维-树脂的界面脱粘。  相似文献   

12.
为了改善碳纤维/聚酰胺6织物复合材料界面的结合状态,提高复合材料的力学性能,通过混编的方式制备了碳纤维/聚酰胺6预制体,混编织造前碳纤维经500℃-2 min高温处理后浸泡在1wt%浓度的PA 845H-TDS-CN上浆液中20 s,最后将预制体通过热压成型,制备碳纤维织物/聚酰胺6复合材料。采用TGA、DSC、SEM、万能拉伸试验机分析碳纤维/聚酰胺6复合材料的热性能、晶型变化、微观形貌及力学性能。结果表明,聚酰胺6树脂主要以α晶型存在,结晶较为完善。纤维拔出后,单根碳纤维表面附着部分尼龙基体,碳纤维与尼龙基体形成了良好的界面层。优化后的层合板工艺为:铺层数10层,热压温度240℃,热压压力3 MPa,热压时间15 min。此工艺下,复合材料平均拉伸强度达到了825 MPa,弯曲强度平均值达到了520 MPa。  相似文献   

13.
《功能材料》2021,52(5)
首先,利用上浆法,将改性纳米SiO_2与玄武岩纤维复合;然后利用手工铺料法,制备了纳米SiO_2/玄武岩纤维增强环氧树脂层状复合材料(S-BF/EP)。利用SEM对改性玄武岩纤维和玄武岩纤维/环氧树脂层状复合材料的表面形貌和界面形貌进行了研究;利用FT-IR、TGA和万能力学试验机对复合材料的分子结构、热解性能和耐久性能进行了研究。结果表明,纳米SiO_2成功被偶联剂改性,并均匀附着在玄武岩纤维表面,玄武岩纤维表面的粗糙度被有效地改善;S-BF/EP层状复合材料内纳米SiO_2对应的Si-O-Si键收缩振动,使得S-BF/EP层状复合材料比空白EP样品多出1 107和803 cm~(-1)两个振动峰;S-BF/EP层状复合材料降解温度比EP材料高10℃,其在建筑材料应用方面更有优势;S-BF/EP层状复合材料的抗拉强度和抗弯强度分别为489和987 MPa,均高于环氧树脂材料样品的368和795 MPa;经过95℃湿热老化后,S-BF/EP层状复合材料抗拉强度和抗弯强度性能损失分别为23.9%和9.6%,明显低于空白EP样品的32.9%和36.6%;断裂面SEM分析表明,S-BF/EP层状复合材料中纤维与环氧树脂基体结合紧密,未发现裂纹或者缝隙。  相似文献   

14.
采用多壁碳纳米管(MWCNTs)和丙烯酸酯嵌段共聚物(ACRBC)协同改性制备了多壁碳纳米管-丙烯酸酯嵌段共聚物/环氧树脂(MWCNTs-ACRBC/EP)三元复合材料。通过FTIR、 XPS和SEM对强酸处理后的MWCNTs的性能进行表征,利用DSC法对MWCNTs-ACRBC/EP复合材料的固化反应参数进行表征,采用DMA对MWCNTs-ACRBC/EP复合材料的耐热性进行表征,采用电子力学试验机对MWCNTs-ACRBC/EP复合材料的力学性能进行测试。结果表明:强酸处理后在MWCNTs表面成功形成反应官能团。采用150℃×1 h+180℃×3 h作为MWCNTs-ACRBC/EP复合材料的固化工艺, MWCNTs-ACRBC/EP复合材料的玻璃化转变温度可达197.5℃,提高了13.3%, MWCNTs-ACRBC/EP复合材料的力学性能提高,抗弯强度为144 MPa,弯曲模量为3662 MPa,冲击强度为19.5 kJ/m^2。  相似文献   

15.
酚醛改性苯并噁嗪树脂及其复合材料性能   总被引:4,自引:0,他引:4       下载免费PDF全文
从固化反应动力学、热分解动力学与耐烧蚀性能等方面研究了不同配比酚醛/苯并噁嗪共混树脂,并通过浸渍高硅氧玻璃布制备了相应的树脂复合材料。对其高常温力学、热学与耐烧蚀性能进行了研究。结果表明:共混树脂复合材料常温拉伸强度(214 MPa)、弯曲强度(332 MPa)、压缩强度(217 MPa)与高温层间剪切强度(21.6 MPa)等力学性能均高于酚醛树脂复合材料,热学与烧蚀性能符合耐烧蚀复合材料要求,可以作为一种性能优良的耐烧蚀复合材料。   相似文献   

16.
为了探究合适的碳纤维表面处理方法,改善碳纤维-尼龙6织物复合材料界面结合效果,提高复合材料的力学性能,通过混编的方式制备碳纤维-尼龙6预制件,将预制件浸泡在不同浓度的醇溶尼龙无水乙醇溶液中,最后将预制件通过热压成型,制备碳纤维织物-尼龙6复合材料。采用万能拉伸试验机、SEM、TGA、DSC、XRD分析碳纤维-尼龙6复合材料的力学性能、微观形貌、耐热性能、结晶度及晶型变化。结果表明:将预制件在浓度为1wt%的尼龙溶液处理后,并采用1℃/min的降温速率制备的碳纤维-尼龙6织物复合材料力学性能最佳,抗拉强度、弹性模量、弯曲强度、弯曲模量、冲击强度分别为449.32 MPa、5.32 GPa、657.67 MPa、44.08 GPa、138.42 kJ/m2。纤维拔出后,单根碳纤维表面附着部分尼龙基体,碳纤维与尼龙基体形成了良好的界面层。碳纤维-尼龙6织物复合材料的起始分解温度较尼龙6纤维提高了13℃,耐热性有所增强,尼龙6树脂主要以α晶型存在,结晶较为完善。   相似文献   

17.
目的考察硅酸铝纤维/酚醛树脂复合材料的烧蚀性能、高温隔热性能,同时寻求一种有多重不同隔热材料的密闭体系在高温环境下含有化学热效应的热传导过程的数值解决方法。方法将硅酸铝纤维/酚醛树脂层压复合材料用于密闭体系隔热,利用酚醛树脂高温热分解吸热的特性实现材料主动抗高温隔热的目的。用2 cm厚的硅酸铝纤维/酚醛树脂板材考察其烧蚀隔热性能。制备多层隔热材料的密闭体系进行火烧试验,火烧试验过程测试耐高温隔热材料背面温度以考察材料的隔热情况。对密闭体系包含化学热的多重隔热体系作出"等效热效应"的假设,建立体系的偏微分方程热传导模型,利用Matlab软件对模型进行数值求解,通过数值求解结果与试验测试温度的对比,验证计算结果的准确性。结果 2 cm厚的硅酸铝纤维/酚醛树脂复合材料在敞开体系经120 min单面烧蚀,其背面温度保持在140℃以下且无破坏痕迹;火烧试验中测得的无机耐高温隔热材料热分解吸热延长了其热穿透时间,密闭体系热传导模型数值解与试验结果最大偏差为37%。结论硅酸铝纤维/酚醛树脂复合材料具有良好的耐烧蚀和高温隔热性,热等效假设在解决具有化学热效应的隔热体系的传热问题具有合理性和实用性。  相似文献   

18.
2D-C/C复合材料及其石墨化制品烧蚀特性分析   总被引:1,自引:1,他引:1  
以液化石油气为碳源,2D炭纤维织物为基体,通过1000℃~1100℃沉积热解炭,制备了沉积态2D-C/C复合材料。通过对沉积态2D-C/C复合材料在2800℃热处理10h制备了石墨态2D-C/C复合材料。采用小型发动机烧蚀实验对两种复合材料的烧蚀性能进行了测试和评价;通过比较两种复合材料的孔隙分布、基体和纤维的结合强度以及热导率,解释了它们不同的烧蚀特性和烧蚀机理。结果表明:沉积态2D-C/C复合材料由于孔隙分布少、基体和纤维结合强度大、面间热导小,烧蚀主要由热化学反应(氧化)控制,烧蚀表面平整,烧蚀率为0.033mm/s。石墨态2D-C/C复合材料由于孔隙分布多、基体和纤维结合强度小,烧蚀主要由氧化和机械剥蚀控制,烧蚀表面出现烧蚀坑,烧蚀率为0.046mm/s。  相似文献   

19.
对以环氧树脂为基体,不同混纺比的洋麻/棉混纺织物为增强体所制备的复合材料进行力学性能测试,从而优选最佳洋麻/棉混纺比。然后对最佳混纺比的洋麻/棉混纺织物进行阻燃处理,并测试其增强环氧树脂复合材料力学性能。结果表明,洋麻/棉(40/60)混纺织物增强环氧树脂复合材料力学性能最优,其拉伸强度和模量分别为101.9MPa和6.16GPa;弯曲强度和模量分别为189.64MPa和12.14GPa;剪切强度为17.47MPa。经过阻燃处理的洋麻/棉(40/60)混纺织物增强环氧树脂复合材料其拉伸强度和模量分别为67.85 MPa和5.81GPa;弯曲强度和模量分别为126.02 MPa和8.96GPa;剪切强度为13.62MPa;阻燃性能为自息时间0s,损毁长度4cm;其性能满足汽车零件性能要求,具有一定的实际应用性。  相似文献   

20.
以均苯四甲酰氯(BTAC)和4,4-(9-亚芴基)-二胺(FDA)为油相和水相单体,在微乳液体系中通过界面聚合法制备了聚酰亚胺中空纳米微球.然后配制微球和聚二甲基硅氧烷的正己烷混合液作为涂层液,采用浸渍涂覆法制备聚二甲基硅氧烷/聚酰亚胺中空纳米微球/聚醚酰亚胺复合膜,并对O_2、N_2的渗透速率和O_2/N_2分离性能进行了测试.系统考察了聚合物浓度、预交联时间、浸渍时间、提拉速度及固化温度对复合膜气体渗透性能的影响.结果表明,当硅橡胶质量分数为3%、预交联时间为3 h、浸渍时间为120 s、提拉速度为0.5 m/min、固化温度为80℃时,制备的复合膜性能较佳.测试条件为0.2 MPa、25℃时,具有无缺陷皮层复合膜的O_2渗透速率高达1 676 GPU,O_2/N_2分离因子为2.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号