首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The chaotic behavior of dislocation multiplication process is investigated. The change of Lya-punov exponent which is used to determine the stability of quasi-periodic and chaotic behavior as well as that of equilibrium points and periodic solution is reported using an iteration model of dislocation multiplication. An unusual behavior of Lyapunov exponent and Feigenbaum ex-ponent which respond to the geometric convergence of orbit from bifurcation to chaos is shown by dislocation velocity exponent m and there is a distinction on the tendency of convergence for the dislocation multipIication model when it is compared with togistic map. lt is reasonable for the difference to be analyzed from the materials viewpoint.  相似文献   

2.
Isothermal creep and stress relaxation were studied in germanium single crystals oriented for double slip at 400 to 700? C under compressive stresses of 180 to 490 kgf cm?2. The curves, S-shaped in both types of experiment, were compared with correspondingones derived from a stochastic model involving a spectrum of energy barriers to dislocation movement. Agreement was satisfactory for stress relaxation; discrepancies in the case of creep point to the difficulty of correlating creep and stress relaxation when an equation of state is inadequate as an approximation for representing the plastic response. Differences between predicted and observed behaviour are, however, of diagnostic value concerning the extent of dislocation multiplication and other structural changes.  相似文献   

3.
使用热模拟试验机在1123~1423 K/0.01~10 s-1变形条件下对18.5%对Cr高Mn节镍型双相不锈钢进行了变形量为70%的大变形热压缩,研究其在热变形过程中两相的亚结构特征和软化机理。结果表明,在0.01~0.1 s-1/1123~1223 K范围的热压缩软化以铁素体相的再结晶为主,而在0.1 s-1/1323~1423 K和10 s-1/1223 K范围的热压缩软化以奥氏体相的再结晶为主。在变形温度为1223 K、应变速率由0.01 s-1增大到10 s-1的条件下铁素体相内的位错缠结向胞状结构演化并出现位错线,奥氏体相内的亚结构则转变为细小的再结晶晶粒。应变速率为0.1 s-1、变形温度由1123 K提高到1323 K时铁素体相内的位错增加,变形晶粒向胞状组织演化而奥氏体相内的位错减少,由回复组织转变为再结晶组织。根据热变形方程计算出表观应力指数n=7.13,热变形激活能Q=514.29 kJ/mol,并建立了Z参数关系本构方程。根据加工硬化率得到再结晶临界条件,并确定了Z参数与再结晶临界条件的关系。对热加工图的分析结果表明,随着变形量的增大失稳区逐渐减小,最佳加工区域为1348~1423 K/1~10 s-1,功率耗散系数大于0.4。  相似文献   

4.
Paris et al. were the first to show that the fatigue crack growth rate in metals shows a power law relationship with the stress intensity factor range. It is generally accepted that the exponent is material-dependent. However, it is also true that the empirical Paris equation is dimensionally correct only when the dimensions of the constant in the equation are changed with the power law exponent. In the present paper it will be shown that for 29 identical fatigue crack growth tests on aluminium alloy 7075-T7351 the exponent changes between specimens and crack lengths. Fractography and the crack length measurements show that the exponent is higher and varies at crack lengths where crack growth is dominated by plane strain conditions. The power law exponent decreases and is similar for all specimens after the transition to plane stress conditions at higher crack lengths. The mathematical concept of a pivot point is used to model crack growth with two different exponents using a dimensionally correct equation. It also allows modelling the crack growth variation in all specimens by varying only one parameter, the power law exponent for the plane strain condition.  相似文献   

5.
Ultra-high strength alloys with good ductility are ideal materials for lightweight structural application in various industries. However, improving the strength of alloys frequently results in a reduction in ductility, which is known as the strength-ductility trade-off in metallic materials. Current alloy design strategies for improving the ductility of ultra-high strength alloys mainly focus on the selection of alloy composition (atomic length scale) or manipulating ultra-fine and nano-grained microstructure (grain length scale). The intermediate length scale between atomic and grain scales is the dislocation length scale. A new alloy design concept based on such dislocation length scale, namely dislocation engineering, is illustrated in the present work. This dislocation engineering concept has been successfully substantiated by the design and fabrication of a deformed and partitioned (D&P) steel with a yield strength of 2.2 GPa and an uniform elongation of 16%. In this D&P steel, high dislocation density can not only increase strength but also improve ductility. High dislocation density is mainly responsible for the improved yield strength through dislocation forest hardening, whilst the improved ductility is achieved by the glide of intensive mobile dislocations and well-controlled transformation-induced plasticity (TRIP) effect, both of which are governed by the high dislocation density resulting from warm rolling and martensitic transformation during cold rolling. In addition, the present work proposes for the first time to apply such dislocation engineering concept to the quenching and partitioning (Q&P) steel by incorporating a warm rolling process prior to the quenching step, with an aim to improve simultaneously the strength and ductility of the Q&P steel. It is believed that dislocation engineering provides a new promising alloy design strategy for producing novel strong and ductile alloys.  相似文献   

6.
纳米TiO2晶粒生长动力学研究   总被引:9,自引:0,他引:9  
研究了纳米TiO2粒子热处理过程的晶粒生长,结果表明:低于823K锐钛矿晶粒的长大速率较小,823K后锐钛矿晶粒的长大速率显著增加.锐钛矿晶粒的生长动力学符合五次方方程,表观生长活化能由于纳米尺寸和相变效应的影响在高温区和低温区表现不同,高于823K时为(201.55±5.62)kJ/mol,低于823K时为(38.67±6.37)kJ/mol;金红石晶粒的生长符合二次方方程,表观生长活化能为(108.72±5.06)kJ/mol.  相似文献   

7.
Nanoindentation tests of the high nitrogen nickel-free austenitic stainless steel (HNS) were performed with peak load in a wide range of 100–600?mN to investigate the nanoindentation creep deformation behaviours. The results of the nanoindentation creep tests have demonstrated that the load plateaus, creep strain rate and creep stress of the cold-rolled HNS are larger and its creep stress exponent is smaller than the solution-treated HNS. The analysis reveals that the obvious creep deformation behaviour in the cold-rolled HNS arises from the rapidly relaxed dislocation structures in the initial transition regime, while the small creep deformation behaviour of the solution-treatedHNS is mainly attributed to that the stable dislocation structures for the intensive interactions between dislocations.  相似文献   

8.
By using the single carbon-steel fibre-copper matrix composites, the important parameters controlling dislocation motions in the fibre, matrix and composite, namely flow stress, internal stress, effective stress, change in flow stress due to change in strain-rate or temperature, stress exponent of strain-rate, effective stress exponent of dislocation velocity, activation volume and activation enthalpy were measured at the stage in which the mechanical interaction between the components was negligible. It was found that all the composite parameters were determined only by the properties of the components and for each parameter, a modified rule of mixtures was derived.  相似文献   

9.
High-temperature creep equipment with very high precision has been used to measure the creep of MgO single crystals above 1948 K and stresses lower than 4 MPa. A transition in exponent,n, from 3 at stresses higher than 2 MPa to almost unity at lower stress region was observed. Since in a single crystal deformation can only occur by the generation and movement of dislocations, the transition in stress exponent from high to low stress region cannot be interpreted in terms of a change from dislocation to diffusional creep processes. Decreasing the stress by a small amount during steady-state creep resulted in an incubation period of zero creep rate before creep commenced at lower stress. However, large stress reduction led to a period of negative creep during which the dislocation substructure coarsens and the subgrain cell boundaries straighten. On the basis of dislocation substructure studies, it is proposed that the kinetics of backflow are thought to be based on the local network refinement caused by the reverse movement of dislocations and that recovery is necessary before further movement of dislocation can occur. It is shown that the network theory proposed by Davis and Wilshire can satisfactorily account for all stress reduction observed during forward creep.  相似文献   

10.
Understanding the relationship between microstructure features and mechanical properties is of great significance for the improvement and specific adjustment of steel properties. The relationship between mean grain size and yield strength is established by the well-known Hall-Petch equation. But due to the complexity of the grain configuration within materials, considering only the mean value is unlikely to give a complete representation of the mechanical behavior. The classical Taylor equation is often used to account for the effect of dislocation density, but not thoroughly tested in combination with grain size influence. In the present study, systematic heat treatment routes and cold rolling followed by annealing are designed for interstitial free(IF) steel to achieve ferritic microstructures that not only vary in mean grain size, but also in grain size distribution and in dislocation density, a combination that is rarely studied in the literature. Optical microscopy is applied to determine the grain size distribution. The dislocation density is determined through XRD measurements. The hardness is analyzed on its relation with the mean grain size, as well as with the grain size distribution and the dislocation density. With the help of the variable selection tool LASSO, it is shown that dislocation density, mean grain size and kurtosis of grain size distribution are the three features which most strongly affect hardness of IF steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号