首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of numerous microcracks causes changes in the stiffness or fracture toughness of materials. In this paper, the manifestations of mechanical properties in the damaged materials caused by the microcracks are evaluated by the present homogenization method based on the superposition method together with the VNA solution. Moreover, it is known that the stress concentration at the macrocrack tip decreases due to the stress relaxation effect caused by the existence of the microcracks. In order to evaluate the manifestations of mechanical behavior, the mechanical effects of the existence of the microcracks on the macrocrack, the component separation method for mixed-mode stress intensity factors of the macrocrack in the damaged materials is newly developed in this paper. Various numerical analyses are successfully conducted for the two topics, the mechanical properties of the damaged materials and the mechanical behavior of the macrocrack in the damaged materials.  相似文献   

2.
A multi-scale computational method using the homogenization theory and the finite element mesh superposition technique is presented for the stress analysis of composite materials and structures from both micro- and macroscopic standpoints. The proposed method is based on the continuum mechanics, and the micro–macro coupling effects are considered for a variety of composites with very complex microstructures. To bridge the gap of the length scale between the microscale and the macroscale, the homogenized material model is basically used. The classical homogenized model can be applied to the case that the microstructures are periodically arrayed in the structure and that the macroscopic strain field is uniform within the microscopic unit cell domain. When these two conditions are satisfied, the homogenization theory provides the most reliable homogenized properties rigorously to the continuum mechanics. This theory can also calculate the microscopic stresses as well as the macroscopic stresses, which is the most attractive advantage of this theory over other homogenizing techniques such as the rule of mixture. The most notable feature of this paper is to utilize the finite element mesh superposition technique along with the homogenization theory in order to analyze cases where non-periodic local heterogeneity exists and the macroscopic field is non-uniform. The accuracy of the analysis using the finite element mesh superposition technique is verified through a simple example. Then, two numerical examples of knitted fabric composite materials and particulate reinforced composite material are shown. In the latter example, a shell-solid connection is also adopted for the cost-effective multi-scale modeling and analysis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
A generalization of the mathematical homogenization theory to account for locally nonperiodic solutions is presented. Such nonperiodicity may arise either due to the rapidly varying microstructure (e.g.: graded materials, microcracks) or because the macroscopic solution is not smooth and may have significant variation within a microstructure. In the portion of the problem domain where the material is formed by a spatial repetition of the base cell and the macroscopic solution is smooth, a double scale asymptotic expansion and solution periodicity are assumed, and consequently, mathematical homogenization theory is employed to uncouple the microscopic problem from the global solution. For the rest of the problem domain it is assumed that the periodic solution does not exist (cutouts, cracks, free edges in composites, etc.) and the approximation space is decomposed into macroscopic and microscopic fields. Compatibility between the two regions is explicitly enforced. The proposed method is applied to resolve the structure of the microscopic fields in the single ply composite plates with a centered hole and with a centered crack and in the [0/90] s laminated plate. Numerical results are compared to the reference solution, an engineering global-local approach, and the direct extraction from the mathematical homogenization method.  相似文献   

4.
The generalized self-consistent method (GSCM) in conjunction with a computational finite element method is used to calculate the anisotropic effective moduli of a medium containing damage consisting of microcracks with an arbitrary degree of alignment. Since cracks respond differently under different external loads, the moduli of the medium subjected to tension, compression and an initially stress-free state are evaluated and shown to be significantly different, which will further affect the wave speed inside the damaged media. There are four independent material moduli for a 2-D plane stress orthotropic medium in tension or compression, and seven independent material moduli for a 2-D plane stress orthotropic cracked medium, which is initially stress free. When friction exists, it further changes the effective moduli. Numerical methods are used to take into account crack face contact and friction. The wave slowness profiles for microcrack damaged media are plotted using the predicted effective material moduli.  相似文献   

5.
This paper presents the development of an alternating method for the interaction analysis of arbitrary distributed numerous elliptical microcracks. The complete analytical solutions (VNA solutions) for a single elliptical crack in an infinite solid, subject to arbitrary crack-face tractions, are implemented in the present alternating method, together with the coordinate transformations for stress tensors. First, the present method is verified by solving the problems of two interacting cracks for which accurate numerical solutions have been obtained previously. Next, the present method demonstrates obtaining efficient and accurate solutions for the problems of many interacting elliptical cracks, which cannot be solved in a practical sense by the ordinary numerical methods such as the finite element method. Furthermore, damaged solids containing periodically distributed elliptical microcracks are analyzed by the present alternating method. The effective elastic moduli are evaluated for varying microcrack density. Detailed structures of the interactions in the damaged solids are visualized and clarified. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
An advanced discretization meshless technique, the radial point interpolation method (RPIM), is applied to analyze concrete structures using an elastic continuum damage constitutive model. Here, the theoretical basis of the material model and the computational procedure are fully presented. The plane stress meshless formulation is extended to a rate-independent damage criterion, where both compressive and tensile damage evolutions are established based on a Helmholtz free energy function. Within the return-mapping damage algorithm, the required variable fields, such as the damage variables and the displacement field, are obtained. This study uses the Newton–Raphson nonlinear solution algorithm to achieve the nonlinear damage solution. The verification, where the performance is assessed, of the proposed model is demonstrated by relevant numerical examples available in the literature.  相似文献   

7.
Composite materials of two‐dimensional structures are designed using the homogenization design method. The composite material is made of two or three different material phases. Designing the composite material consists of finding a distribution of material phases that minimizes the mean compliance of the macrostructure subject to volume fraction constraints of the constituent phases, within a unit cell of periodic microstructures. At the start of the computational solution, the material distribution of the microstructure is represented as a pure mixture of the constituent phases. As the iteration procedure unfolds, the component phases separate themselves out to form distinctive interfaces. The effective material properties of the artificially mixed materials are defined by the interpolation of the constituents. The optimization problem is solved using the sequential linear programming method. Both the macrostructure and the microstructures are analysed using the finite element method in each iteration step. Several examples of optimal topology design of composite material are presented to demonstrate the validity of the present numerical algorithm. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
周期性单胞复合材料有效弹性性能的边界力方法   总被引:1,自引:1,他引:0  
均匀化方法是一种适应于周期性构造复合材料有效性能预测的有效方法。然而均匀化方程数学表达形式复杂, 均匀化方法很难直接应用通用有限元软件进行计算, 因此本文中提出一种便于求解均匀化方程的边界力方法, 利用高斯定理将原均匀化问题转化为普通的三维应力问题, 给出了单胞中不同材料交界面上作用的面分布力形式。运用有限元软件求解了均匀化系数, 预报了单向复合材料和三维四向编织复合材料的有效性能, 计算结果与实验吻合很好。   相似文献   

9.
The paper presented is devoted to the Boundary Element Method based homogenization of the periodic transversely isotropic linear elastic fiber-reinforced composites. The composite material under consideration has deterministically defined elastic properties while its components are perfectly bonded. To have a good comparison with the FEM-based computational techniques used previously, the additional Finite Element discretization is presented and compared numerically against BEM homogenization implementation on the example of engineering glass–epoxy composite. The homogenization method proposed has rather general characteristics and, as it is shown, can be easily extended on n-component composites. On the contrary, we can consider and homogenize the heterogeneous media with randomly defined material properties using Monte-Carlo simulation technique or second order perturbation second probabilistic moment approach.  相似文献   

10.
This paper presents the development of an alternating method for the interaction analysis of arbitrary distributed numerous elliptical microcracks. The complete analytical solutions (VNA solutions) for a single elliptical crack in an infinite solid, subject to arbitrary crack-face tractions, are implemented in the present alternating method, together with the coordinate transformations for stress tensors. First, the present method is verified by solving the problems of two interacting cracks for which accurate numerical solutions have been obtained previously. Next, the present method demonstrates obtaining efficient and accurate solutions for the problems of many interacting elliptical cracks, which cannot be solved in a practical sense by the ordinary numerical methods such as the finite element method. Furthermore, damaged solids containing periodically distributed elliptical microcracks are analyzed by the present alternating method. The effective elastic moduli are evaluated for varying microcrack density. Detailed structures of the interactions in the damaged solids are visualized and clarified. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
一种新的疲劳损伤演化模型   总被引:3,自引:0,他引:3  
考虑到金属构件的疲劳损伤主要属于机械损伤,则造成损伤的外因主要是应力幅,而导致损伤的内因是材料本身的性质。基于损伤力学基础理论推导的一般损伤演化方程,并结合断裂力学中经典的帕里斯公式,以有效当量应力幅和材料损伤的特性参数为控制变量得到了一种新的疲劳损伤演化模型,并以12Cr1MoV钢为例进行了实验分析。结果表明:新模型形式简单、参数少,且比Lemaitre模型与实验结果符合得更好。  相似文献   

12.
In this paper, we present a phase-field method to the problem of shape and topology synthesis of structures with three materials. A single phase model is developed based on the classical phase-transition theory in the fields of mechanics and material sciences. The multi-material synthesis is formulated as a continuous optimization problem within a fixed reference domain. As a single parameter, the phase-field model represents regions made of any of the three distinct material phases and the interface between the regions. The Van der Waals–Cahn-Hilliard theory is applied to define a dynamic process of phase transition. The Γ-convergence theory is used for an approximate numerical solution to this free-discontinuity problem without any explicit tracking of the interface. Within this variational framework, we show that the phase-transition theory leads to a well-posed problem formulation with the effects of “domain regularization” and “region segmentation” incorporated naturally. The proposed phase-field method is illustrated with several 2D examples that have been extensively used in the recent literature of topology optimization, especially in the homogenization based methods. It is further suggested that such a phase-field approach may represent a promising alternative to the widely-used homogenization models for the design of heterogeneous materials and solids, with a possible extension to a general model of multiple material phases.  相似文献   

13.
A novel approach to simulate crack growth within an extended finite element framework is presented. The introduced approach combines the material force concept and the extended finite element method (xFEM) that is not straight forward and faces the major problem that a crack tip node, which is required for the evaluation of the material force, is not available within an xFEM framework. The introduced concept enables an efficient single step evaluation of the crack state and the crack growth direction based on a continuum mechanics approach and represents an alternative to the common procedure of using the stress intensity factor solution within a stress or energy‐based empirical formulation for the determination of the crack growth direction. Two different approaches are introduced that evaluate the crack tip material force within the xFEM based on a domain or contour approach, both providing equivalent results. After an evaluation of the method, a major focus is set on crack growth investigations with increased complexity, including mixed mode loading and crack interaction with other discontinuities. The influence of different evaluation parameters is studied by comparing the results with empirical, experimental and alternative numerical solutions and confirms the applicability and capability of the proposed combination of both concepts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Derivation and implementation of the homogenization method including determination of sensitivity gradients of the effective elasticity tensor using combined numerical-analytical approach are addressed in this paper. This is possible thanks to an application of the numerical response function together with the effective moduli method known from classical homogenization theory. Computational procedure is implemented using 4-noded quadrilateral plane strain finite elements (program MCCEFF) and the symbolic computations system MAPLE. The sensitivity coefficients are determined on the basis of partial derivatives of the homogenized elasticity tensor calculated using the response function method with respect to all composite components’ elastic characteristics. They are further separately subjected to normalization procedure for a final comparison with each other. Such an enriched homogenization procedure is tested on the periodic fiber-reinforced two component composites; the results of computational analysis are compared to the results of the central finite difference approach applied before. Computational methodology proposed here may be further successively applied not only in the context of homogenization method but also to extend various discrete computational techniques like boundary/finite element, finite difference and volumes together with various meshless methods.  相似文献   

15.
Shot peening (SP) is a conventional method used for improving material properties, especially fatigue strength, through work hardening and the induction of compressive residual stress (CRS) near the surface by plastic deformation. However, CRS is redistributed and relaxed by the occurrence of physical discontinuities such as microcracks. In this study, the effects of residual stress redistribution and relaxation during the fatigue life associated with microdamages on the properties of a material were considered. To this end, annealed medium-carbon steel was treated with SP at three levels of peening intensity to investigate the effects on fatigue life and residual stress distributions. Rotating–bending fatigue tests were carried out to clarify the fatigue life distributions, and X-ray diffraction and scanning electron microscopy were used for residual stress and full-width at half-maximum (FWHM) values, microscopic inspections, respectively. The results indicate that microcracks at the treated surface significantly influenced stress redistribution, depending on the initial residual stress distribution at the surface. Moreover, when the induced CRS was relaxed during mechanical loading, these microcracks caused fatigue life degradation regardless of peening treatment. The effects of surface microcracks on stress redistribution and relaxation were discussed and a valuable range of peening conditions of used material was proposed.  相似文献   

16.
Qing-Hua Qin   《Composite Structures》2004,66(1-4):295-299
Applications of boundary element method (BEM) to piezoelectric composites in conjunction with homogenization approach for determining their effective material properties are discussed in this paper. The composites considered here consist of inclusion and matrix phases. The homogenization model for composites with inhomogeneities is developed and introduced into a BE formulation to provide an effective means for estimating overall material constants of two-phase composites. In this model, a representative volume element (RVE) is used whose volume average stress and strain are calculated by the boundary tractions and displacements of the RVE. Thus BEM is suitable for performing calculations on average stress and strain fields of the composites. Numerical results for a piezoelectric plate with circular inclusions are presented to illustrate the application of the proposed micromechanics––BE formulation.  相似文献   

17.
A new algorithm is proposed to impose a macroscopic stress or mixed stress/deformation gradient history in the context of nonlinear Galerkin-based fast Fourier transform homogenization. The method proposed is based on the definition of a modified projection operator in which the null frequencies enforce the type of control (stress or strain) for each component of either the macroscopic first Piola stress or the deformation gradient. The resulting problem is solved exactly as the original variational method, and it does not require additional iterations compared to the strain control version, neither in the linear iterative solver nor in the Newton scheme. The efficiency of the proposed method is demonstrated with a series of numerical examples, including a polycrystal and a particle-reinforced hyperelastic material.  相似文献   

18.
The material point method for the analysis of deformable bodies is revisited and originally upgraded to simulate crack propagation in brittle media. In this setting, phase‐field modelling is introduced to resolve the crack path geometry. Following a particle in cell approach, the coupled continuum/phase‐field governing equations are defined at a set of material points and interpolated at the nodal points of an Eulerian, ie, non‐evolving, mesh. The accuracy of the simulated crack path is thus decoupled from the quality of the underlying finite element mesh and relieved from corresponding mesh‐distortion errors. A staggered incremental procedure is implemented for the solution of the discrete coupled governing equations of the phase‐field brittle fracture problem. The proposed method is verified through a series of benchmark tests while comparisons are made between the proposed scheme, the corresponding finite element implementation, and experimental results.  相似文献   

19.
The automatic generation of meshes for the finite element (FE) method can be an expensive computational burden, especially in structural problems with localized stress peaks. The use of meshless methods can address such an issue, as these techniques do not require the existence of an underlying connection among the particles selected in a general domain. This study advances a numerical strategy that blends the FE method with the meshless local Petrov–Galerkin technique in structural mechanics, with the aim at exploiting the most attractive features of each procedure. The idea relies on the use of FEs to compute a background solution that is locally improved by enriching the approximation space with the basis functions associated to a few meshless points, thus taking advantage of the flexibility ensured by the use of particles disconnected from an underlying grid. Adding the meshless particles only where needed avoids the cost of mesh refining, or even of remeshing, without the prohibitive computational cost of a thoroughly meshfree approach. In the present implementation, an efficient integration strategy for the computation of the coefficients taking into account the mutual FE–meshless local Petrov–Galerkin interactions is introduced. Moreover, essential boundary conditions are enforced separately on both FEs and meshless particles, thus allowing for an overall accuracy improvement also when the enriched region is close to the domain boundary. Numerical examples in structural problems show that the proposed approach can significantly improve the solution accuracy at a local level, with no remeshing effort, and at a low computational cost. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Two grades of structural steel were subjected to fully reversible, constant stress amplitude cyclic loading. The local strain response of the material was measured and recorded during the test, with the applied testing technique enabling the monitoring of hysteresis loop variation for the narrowest cross‐section of the hourglass specimen. Changes in hysteresis loop width, representing the local inelastic response of the material, were recorded in order to monitor the density of structural imperfections. Material ratcheting behaviour was observed as changes in the mean strain for selected load cycles. Ratcheting was attributed to local deformation of the material in the vicinity of imperfections such as voids or inclusions, as well as deformation induced by the propagation of microcracks. Definitions of a damage indicator parameter and damage parameter were proposed. The fatigue behaviour of the two investigated grades of steel was finally illustrated in the form of damage curves for different stress amplitudes and for undamaged and fatigue pre‐damaged material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号