首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Assessment of elastic parameters of human skin using dynamic elastography   总被引:4,自引:0,他引:4  
Sonoelastography and transient elastography are two ultrasound-based techniques that facilitate noninvasive characterization of the viscoelastic properties of soft tissues by investigating their response to shear mechanical excitation. Young's modulus is the principle assessment parameter. Because it defines local tissue stiffness, it is of major interest for the medical imaging and cosmetic industries as it could replace subjective palpation by yielding local, quantitative information. In this paper, we describe a new high-resolution device capable of measuring local Young's modulus in very thin layers (1-5 mm) and devoted to the in vivo evaluation of the elastic properties of human skin. It uses an ultrasonic probe (50 MHz) for tracking the displacements induced by a 300 Hz shear wave generated by a ring surrounding the transducer. The displacements are measured using a conventional cross-correlation technique between successive ultrasonic back-scattered echoes. First, this noninvasive technique has been experimentally proven to be accurate for investigating elasticity in different skin-mimicking phantoms. Second, data were acquired in vivo on human forearms. As expected, Young's modulus was found to be higher in the dermis than in the hypodermis and other soft tissues.  相似文献   

2.
In elastography, quantitative imaging of soft tissue elastic properties is provided by local shear wave speed estimation. Shear wave imaging in a homogeneous medium thicker than the shear wavelength is eased by a simple relationship between shear wave speed and local shear modulus. In thin layered organs, the shear wave is guided and thus undergoes dispersive effects. This case is encountered in medical applications such as elastography of skin layers, corneas, or arterial walls. In this work, we proposed and validated shear wave spectroscopy as a method for elastic modulus quantification in such layered tissues. Shear wave dispersion curves in thin layers were obtained by finite-difference simulations and numerical solving of the boundary conditions. In addition, an analytical approximation of the dispersion equation was derived from the leaky Lamb wave theory. In vitro dispersion curves obtained from phantoms were consistent with numerical studies (deviation <1.4%). The least-mean-squares fitting of the dispersion curves enables a quantitative and accurate (error < 5% of the transverse speed) assessment of the elasticity. Dispersion curves were also found to be poorly influenced by shear viscosity. This phenomenon allows independent recovery of the shear modulus and the viscosity, using, respectively, the dispersion curve and the attenuation estimation along the propagation axis.  相似文献   

3.
The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is today hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to the 2-D mapping of temperature changes during HIFU treatments. This new concept of shear wave thermometry is experimentally implemented here using conventional ultrasonic imaging probes. HIFU treatment and monitoring were, respectively, performed using a confocal setup consisting of a 2.5-MHz single-element transducer focused at 30 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Thermocouple measurements and ultrasound-based thermometry were used as a gold standard technique and were combined with SWI on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created using 100-μs pushing beams at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Elasticity and temperature mapping was achieved every 3 s, leading to realtime monitoring of the treatment. Tissue stiffness was found to decrease in the focal zone for temperatures up to 43°C. Ultrasound-based temperature estimation was highly correlated to stiffness variation maps (r2 = 0.91 to 0.97). A reversible calibration phase of the changes of elasticity with temperature can be made locally using sighting shots. This calibration process allows for the derivation of temperature maps from shear wave imaging. Compared with conventional ultrasound-based approaches, shear wave thermometry is found to be much more robust to motion artifacts.  相似文献   

4.
For the last 10 years, interest has grown in low frequency shear waves that propagate in the human body. However, the generation of shear waves by acoustic vibrators is a relatively complex problem, and the directivity patterns of shear waves produced by the usual vibrators are more complicated than those obtained for longitudinal ultrasonic transducers. To extract shear modulus parameters from the shear wave propagation in soft tissues, it is important to understand and to optimize the directivity pattern of shear wave vibrators. This paper is devoted to a careful study of the theoretical and the experimental directivity pattern produced by a point source in soft tissues. Both theoretical and experimental measurements show that the directivity pattern of a point source vibrator presents two very strong lobes for an angle around 35 degrees . This paper also points out the impact of the near field in the problem of shear wave generation.  相似文献   

5.
Bone tissue contains microcracks that may affect its mechanical properties as well as the whole trabecular structure. The relationship between crack density and bone strength is nevertheless poorly understood. Linear ultrasound techniques being almost insensitive to the level of damage, we propose a method to measure acoustic non- linearity in trabecular bone using time-of-flight modulation (TOFM) measurements. Ultrasonic short bursts times-of- flight (TOF) are modulated as a result of nonlinear interaction with a low-frequency (LF) wave in the medium. TOF variations are directly related to elastic modulus variations. Classical and nonclassical nonlinear parameters beta, delta, and alpha can be derived from these measurements. The method was validated in materials with classical, quadratic, nonlinear elasticity. In dense trabecular bone region, TOFM related to classical, quadratic, nonlinear elasticity as a function of the LF pressure exhibits tension-compression asymmetry. The TOFM amplitude measured in dense areas of trabecular bone is almost one order of magnitude higher than in a low-density area, but the linear parameters show much smaller variations: 5% for ultrasound propagation velocity and 100% for broadband ultrasonic attenuation (BUA). In high-density trabecular bone regions, beta depends on the LF pressure amplitude and can reach 400 at 50 kPa.  相似文献   

6.
In recent years, novel quantitative techniques have been developed to provide noninvasive and quantitative stiffness images based on shear wave propagation. Using radiation force and ultrafast ultrasound imaging, the supersonic shear imaging technique allows one to remotely generate and follow a transient plane shear wave propagating in vivo in real time. The tissue shear modulus, i.e., its stiffness, can then be estimated from the shear wave local velocity. However, because the local shear wave velocity is estimated using a time-of- flight approach, reflected shear waves can cause artifacts in the estimated shear velocity because the incident and reflected waves propagate in opposite directions. Such effects have been reported in the literature as a potential drawback of elastography techniques based on shear wave speed, particularly in the case of high stiffness contrasts, such as in atherosclerotic plaque or stiff lesions. In this letter, we present our implementation of a simple directional filter, previously used for magnetic resonance elastography, which separates the forward- and backward-propagating waves to solve this problem. Such a directional filter could be applied to many elastography techniques based on the local estimation of shear wave speed propagation, such as acoustic radiation force imaging (ARFI), shearwave dispersion ultrasound vibrometry (SDUV), needle-based elastography, harmonic motion imaging, or crawling waves when the local propagation direction is known and high-resolution spatial and temporal data are acquired.  相似文献   

7.
This paper presents the progress of successful location of grouting faults in tendon ducts with ultrasonic imaging. The examples were obtained in the research group FOR 384 funded by DFG (German Research Foundation). The co-operation of experimental research and modeling allowed imaging and identification of grouted and ungrouted areas of tendon ducts (including strands) in a large test specimen (40 m2). In addition to the criteria for indicating grouting faults in post-tensioned ducts known until now the phase evaluation of reflected ultrasonic pulses is described. Experiments and modeling of wave propagation are presented for reflections at metal plates in concrete (thickness range 0.5 mm to 40 mm) and for tendon ducts including strands. The main part of the progress was achieved by automated measurements using dry contact transducers, 3D-SAFT reconstruction including phase evaluation and modeling considering wave propagation for typical elastic parameters and exact experimental site conditions. The results for shear waves as well as for pressure waves are compared in the frequency range from 50 kHz to 120 kHz.  相似文献   

8.
The two-wave phenomenon reflects not only bone mass but also the complex bone structure of cancellous bone. We propose a new simple imaging technique based on the two-wave phenomenon for investigating the anisotropic structure of cancellous bone. A cylindrical specimen of cancellous bone was obtained from a bovine femur. The structure (alignment of trabeculae) of the specimen was obtained from 3-D X-ray micro computed tomography imaging. Using a conventional ultrasonic pulse technique, we rotated the receiver around the specimen to investigate the ultrasonic fields after propagation within the specimen. The ultrasonic propagation image clearly showed the effect of the bone structure. We found that the fast wave showed apparent refraction, whereas the slow wave did not. Fast-wave propagation imaging is thus a simple and convenient technique for easy interpretation of the anisotropic structure. This imaging technique has the potential to become a powerful tool to investigate the structure of trabeculae during in vivo measurements.  相似文献   

9.
We previously reported an ultrasonic strain measurement-based one-dimensional (1-D) shear modulus reconstruction technique using a regularization method for differential diagnosis of malignancies on human superficial tissues (e.g., breast tissues). Here, ultrasonic strain measurement-based 2-D and 3-D shear modulus reconstruction techniques are described, and the 1-D technique is reviewed and subsequently applied to various human in vivo tissues, including deeply situated tissues (e.g., liver). Because soft tissues are deformed in 3-D space by externally situated arbitrary mechanical sources, the accuracy of the low-dimensional (i.e., 1-D or 2-D) reconstructions is lower to that of 3-D reconstruction due to occurrence of erroneous reconstruction artifacts (i.e., the reconstructed modulus is different than reality). These artifacts are confirmed on simulated inhomogeneous cubic phantoms containing a spherical homogenous inclusion using numerically calculated deformation data. The superiority of quasi-real-time imaging of the shear modulus is then demonstrated by comparing it with conventional B-mode imaging and strain imaging from the standpoints of monitoring the effectiveness of minimally invasive thermal therapy as well as differential diagnosis. Because the 2-D and 3-D techniques require special ultrasonic (US) equipment, the 1-D technique using conventional US imaging equipment is used, even though erroneous artifacts will occur. Specifically, the 1-D technique is applied as a diagnostic tool for differentiating malignancies in human in vivo liver and breast tissue, and a monitoring technique for determining the effectiveness of interstitial electromagnetic wave (micro and rf) thermal therapy on human in vivo liver and calf in vitro liver. Even when using the 1-D technique, reconstructed shear moduli were confirmed to be a suitable measure for monitoring thermal treatment as well as differential diagnosis. These results are encouraging in that they will promote use of 2-D and 3-D reconstruction techniques.  相似文献   

10.
Elasticity estimation of thin-layered soft tissues has gained increasing interest propelled by medical applications like skin, corneal, or arterial wall shear modulus assessment. In this work, the authors propose one-dimensional transient elastography (1DTE) for the shear modulus assessment of thin-layered soft tissue. Experiments on three phantoms with different elasticities and plate thicknesses were performed. First, using 1DTE, the shear wave speed dispersion curve inside the plate was obtained and validated with finite difference simulation. No dispersive effects were observed and the shear wave speed was directly retrieved from time-of-flight measurements. Second, the supersonic shear imaging (SSI) technique (considered to be a gold standard) was performed. For the SSI technique, the propagating wave inside the plate is guided as a Lamb wave. Experimental SSI dispersion curves were compared with finite difference simulation and fitted using a generalized Lamb model to retrieve the plate bulk shear wave speed. Although they are based on totally different mechanical sources and induce completely different diffraction patterns for the shear wave propagation, the 1DTE and SSI techniques resulted in similar shear wave speed estimations. The main advantage of the 1DTE technique is that bulk shear wave speed can be directly retrieved without requiring a dispersion model.  相似文献   

11.
A contrast agent detection method is presented that potentially can improve the diagnostic significance of ultrasound contrast agents. Second order ultrasound field (SURF) contrast imaging is achieved by processing the received signals from transmitted dual frequency band pulse complexes with overlapping high-frequency (HF) and low-frequency (LF) pulses. The transmitted HF pulses are used for image reconstruction, whereas the transmitted LF pulses are used to manipulate the scattering properties of the contrast agent. In the present paper, we discuss how SURF contrast imaging potentially can overcome problems and limitations encountered with available contrast agent detection methods, and we give a few initial examples of in vitro measurements. With SURF contrast imaging, the resonant properties of the contrast agent may be decoupled from the HF imaging pulses. This technique is thus especially interesting for imaging contrast bubbles above their resonance frequency. However, to obtain adequate specificity, it is typically necessary to estimate and correct for accumulative nonlinear effects in the forward wave propagation.  相似文献   

12.
Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence.  相似文献   

13.
The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is currently hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to a precise mapping of the lesion. HIFU treatment and monitoring were respectively performed using a confocal setup consisting of a 2.5-MHz single element transducer focused at 34 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Ultrasound-based strain imaging was combined with shear wave imaging on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created with pushing beams of 100 μs at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Thus, elasticity and strain mapping was achieved every 3 s, leading to real-time monitoring of the treatment. When thermal damage occurs, tissue stiffness was found to increase up to 4-fold and strain imaging showed strong shrinkages that blur the temperature information. We show that strain imaging elastograms are not easy to interpret for accurate lesion characterization, but SWI provides a quantitative mapping of the thermal lesion. Moreover, the concept of shear wave thermometry (SWT) developed in the companion paper allows mapping temperature with the same method. Combined SWT and shear wave imaging can map the lesion stiffening and temperature outside the lesion, which could be used to predict the eventual lesion growth by thermal dose calculation. Finally, SWI is shown to be robust to motion and reliable in vivo on sheep muscle.  相似文献   

14.
Shear elasticity probe for soft tissues with 1-D transient elastography   总被引:5,自引:0,他引:5  
Important tissue parameters such as elasticity can be deduced from the study of the propagation of low frequency shear waves. A new method for measuring the shear velocity in soft tissues is presented in this paper. Unlike conventional transient elastography in which the ultrasonic transducer and the low frequency vibrator are two separated parts, the new method relies on a probe that associates the vibrator and the transducer, which is built on the axis of the vibrator. This setup is easy to use. The low frequency shear wave is driven by the transducer itself that acts as a piston while it is used in pulse echo mode to acquire ultrasonic lines. The results obtained with the new method are in good agreement with those obtained with the conventional one.  相似文献   

15.
潘婷婷  王志春 《声学技术》2021,40(3):365-369
使用电磁超声横波对二冷区尾端的连铸坯壳厚度进行检测,并建立了有限元仿真模型。选取Q235连铸小钢坯作为被测对象。为减小永磁铁的提离距离、在被测体内部生成更大的感应涡流,文章利用多物理场有限元仿真软件建立了一种不同于一般结构的电磁超声换能器仿真模型:圆柱形永磁体两侧并行排列螺旋线圈。分析了永磁铁尺寸对磁场涡流的影响以及电磁超声横波在被测钢坯内不同时间、不同位置的传播情况。计算了被测体中的磁通密度模和电流密度模,同时计算了产生的涡流大小及质点位移情况。研究结果表明:该结构的电磁超声换能器可以在连铸坯壳内成功激发并接收电磁超声横波,且横波穿透力强、效率高,能够成功探测连铸钢坯的回波信号并计算出坯壳的厚度。  相似文献   

16.
A method using pulse echo ultrasound and the Kalman filter is developed for detecting submicron harmonic motion induced by ultrasonic radiation force. The method estimates the amplitude and phase of the motion at desired locations within a tissue region with high sensitivity. The harmonic motion generated by the ultrasound radiation force is expressed as extremely small oscillatory Doppler frequency shifts in the fast time (A-line) of ultrasound echoes, which are difficult to estimate. In slow time (repetitive ultrasound echoes) of the echoes, the motion also is presented as oscillatory phase shifts, from which the amplitude and phase of the harmonic motion can be estimated with the least mean squared error by Kalman filter. This technique can be used to estimate the traveling speed of a harmonic shear wave by tracking its phase changes during propagation. The shear wave propagation speed can be used to solve for the elasticity and viscosity of tissue as reported in our earlier study. Validation and in vitro experiments indicate that the method provides excellent estimations for very small (submicron) harmonic vibrations and has potential for noninvasive and quantitative stiffness measurements of tissues such as artery.  相似文献   

17.
This paper describes a new technique for two-dimensional (2-D) imaging of the motion vector at a very high frame rate with ultrasound. Its potential is experimentally demonstrated for transient elastography. But, beyond this application, it also could be promising for color flow and reflectivity imaging. To date, only axial displacements induced in human tissues by low-frequency vibrators were measured during transient elastography. The proposed technique allows us to follow both axial and lateral displacements during the shear wave propagation and thus should improve Young's modulus image reconstruction. The process is a combination of several ideas well-known in ultrasonic imaging: ultra-fast imaging, multisynthetic aperture beamforming, 1-D speckle tracking, and compound imaging. Classical beamforming in the transmit mode is replaced here by a single plane wave insonification increasing the frame rate by at least a factor of 128. The beamforming is achieved only in the receive mode on two independent subapertures. Comparison of successive frames by a classical 1-D speckle tracking algorithm allows estimation of displacements along two different directions linked to the subapertures beams. The variance of the estimates is finally improved by tilting the emitting plane wave at each insonification, thus allowing reception of successive decorrelated speckle patterns.  相似文献   

18.
无砟轨道是典型的层状混凝土结构,脱层缺陷是其最常见的损伤形式,影响着高速列车的安全运行。传统的合成孔径聚焦成像方法是基于恒定声速的超声检测方法,忽略层间的声阻抗差异以及声波在层间界面处的折射,导致声束难以在缺陷处聚焦,声波在层状结构中传播的时间误差较大。鉴于此,提出了一种多层结构合成孔径聚焦成像方法,充分考虑多层结构中的层间声速差异,采用射线追踪方法准确获取声波在多层结构中的传播时间。在此基础上,分析了不同入射波模式以及不同激发频率对多层结构合成孔径聚焦成像结果的影响。结果表明:采用多层结构合成孔径聚焦成像方法,使用频率为50 kHz的横波入射成像分辨率更高,对无砟轨道脱层缺陷检测效果更好。该研究为该类缺陷检测提供了理论支撑。  相似文献   

19.
Supersonic shear imaging (SSI) is a new ultrasound-based technique for real-time visualization of soft tissue viscoelastic properties. Using ultrasonic focused beams, it is possible to remotely generate mechanical vibration sources radiating low-frequency, shear waves inside tissues. Relying on this concept, SSI proposes to create such a source and make it move at a supersonic speed. In analogy with the "sonic boom" created by a supersonic aircraft, the resulting shear waves will interfere constructively along a Mach cone, creating two intense plane shear waves. These waves propagate through the medium and are progressively distorted by tissue heterogeneities. An ultrafast scanner prototype is able to both generate this supersonic source and image (5000 frames/s) the propagation of the resulting shear waves. Using inversion algorithms, the shear elasticity of medium can be mapped quantitatively from this propagation movie. The SSI enables tissue elasticity mapping in less than 20 ms, even in strongly viscous medium like breast. Modalities such as shear compounding are implementable by tilting shear waves in different directions and improving the elasticity estimation. Results validating SSI in heterogeneous phantoms are presented. The first in vivo investigations made on healthy volunteers emphasize the potential clinical applicability of SSI for breast cancer detection.  相似文献   

20.
Linear viscoelasticity offers a minimal framework within which to construct a causal model for wave propagation in absorptive media. Viscoelastic media are often described as media with `fading memory,' that is, the present state of stress is dependent on the present strain and the complete time history of strain convolved with appropriate time-dependent shear and bulk stress relaxation moduli. An axisymmetric, displacement-based finite element method for modeling pulsed ultrasonic waves in linear, homogeneous, and isotropic (LHI) viscoelastic media is developed that does not require storage of the complete time history of displacement at every node. This is accomplished by modeling stress relaxation moduli as discrete or continuous spectra of decaying exponentials and relaxation times. Details of the construction and computation of the time-dependent stiffness matrix are presented. As an application of the finite element method, a finite number of exponentials (amplitudes and relaxation times) are employed to represent a typical model for a continuous relaxation spectrum. It is demonstrated that a small number of discrete exponentials are required to model ultrasonic wave propagation of a typical band-limited pulse in a model material accurately. Previous work has shown this model to be consistent with other analytic models for wave propagation in viscoelastic media  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号