首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As they have nutritional, therapeutic, so values, plants were regarded as important and they’re the main source of humankind’s energy supply. Plant pathogens will affect its leaves at a certain time during crop cultivation, leading to substantial harm to crop productivity & economic selling price. In the agriculture industry, the identification of fungal diseases plays a vital role. However, it requires immense labor, greater planning time, and extensive knowledge of plant pathogens. Computerized approaches are developed and tested by different researchers to classify plant disease identification, and that in many cases they have also had important results several times. Therefore, the proposed study presents a new framework for the recognition of fruits and vegetable diseases. This work comprises of the two phases wherein the phase-I improved localization model is presented that comprises of the two different types of the deep learning models such as You Only Look Once (YOLO)v2 and Open Exchange Neural (ONNX) model. The localization model is constructed by the combination of the deep features that are extracted from the ONNX model and features learning has been done through the convolutional-05 layer and transferred as input to the YOLOv2 model. The localized images passed as input to classify the different types of plant diseases. The classification model is constructed by ensembling the deep features learning, where features are extracted dimension of from pre-trained Efficientnetb0 model and supplied to next 07 layers of the convolutional neural network such as 01 features input, 01 ReLU, 01 Batch-normalization, 02 fully-connected. The proposed model classifies the plant input images into associated labels with approximately 95% prediction scores that are far better as compared to current published work in this domain.  相似文献   

2.
Since the web service is essential in daily lives, cyber security becomes more and more important in this digital world. Malicious Uniform Resource Locator (URL) is a common and serious threat to cybersecurity. It hosts unsolicited content and lure unsuspecting users to become victim of scams, such as theft of private information, monetary loss, and malware installation. Thus, it is imperative to detect such threats. However, traditional approaches for malicious URLs detection that based on the blacklists are easy to be bypassed and lack the ability to detect newly generated malicious URLs. In this paper, we propose a novel malicious URL detection method based on deep learning model to protect against web attacks. Specifically, we firstly use auto-encoder to represent URLs. Then, the represented URLs will be input into a proposed composite neural network for detection. In order to evaluate the proposed system, we made extensive experiments on HTTP CSIC2010 dataset and a dataset we collected, and the experimental results show the effectiveness of the proposed approach.  相似文献   

3.
Malicious Portable Document Format (PDF) files represent one of the largest threats in the computer security space. Significant research has been done using handwritten signatures and machine learning based on detection via manual feature extraction. These approaches are time consuming, require substantial prior knowledge, and the list of features must be updated with each newly discovered vulnerability individually. In this study, we propose two models for PDF malware detection. The first model is a convolutional neural network (CNN) integrated into a standard deviation based regularization model to detect malicious PDF documents. The second model is a support vector machine (SVM) based ensemble model with three different kernels. The two models were trained and tested on two different datasets. The experimental results show that the accuracy of both models is approximately 100%, and the robustness against evasive samples is excellent. Further, the robustness of the models was evaluated with malicious PDF documents generated using Mimicus. Both models can distinguish the different vulnerabilities exploited in malicious files and achieve excellent performance in terms of generalization ability, accuracy, and robustness.  相似文献   

4.
In recent years, with the development of machine learning and deep learning, it is possible to identify and even control crop diseases by using electronic devices instead of manual observation. In this paper, an image recognition method of citrus diseases based on deep learning is proposed. We built a citrus image dataset including six common citrus diseases. The deep learning network is used to train and learn these images, which can effectively identify and classify crop diseases. In the experiment, we use MobileNetV2 model as the primary network and compare it with other network models in the aspect of speed, model size, accuracy. Results show that our method reduces the prediction time consumption and model size while keeping a good classification accuracy. Finally, we discuss the significance of using MobileNetV2 to identify and classify agricultural diseases in mobile terminal, and put forward relevant suggestions.  相似文献   

5.
The sewer system plays an important role in protecting rainfall and treating urban wastewater. Due to the harsh internal environment and complex structure of the sewer, it is difficult to monitor the sewer system. Researchers are developing different methods, such as the Internet of Things and Artificial Intelligence, to monitor and detect the faults in the sewer system. Deep learning is a promising artificial intelligence technology that can effectively identify and classify different sewer system defects. However, the existing deep learning based solution does not provide high accuracy prediction and the defect class considered for classification is very small, which can affect the robustness of the model in the constraint environment. As a result, this paper proposes a sewer condition monitoring framework based on deep learning, which can effectively detect and evaluate defects in sewer pipelines with high accuracy. We also introduce a large dataset of sewer defects with 20 different defect classes found in the sewer pipeline. This study modified the original RegNet model by modifying the squeeze excitation (SE) block and adding the dropout layer and Leaky Rectified Linear Units (LeakyReLU) activation function in the Block structure of RegNet model. This study explored different deep learning methods such as RegNet, ResNet50, very deep convolutional networks (VGG), and GoogleNet to train on the sewer defect dataset. The experimental results indicate that the proposed system framework based on the modified-RegNet (RegNet+) model achieves the highest accuracy of 99.5 compared with the commonly used deep learning models. The proposed model provides a robust deep learning model that can effectively classify 20 different sewer defects and be utilized in real-world sewer condition monitoring applications.  相似文献   

6.
The accurate and stable prediction of protein domain boundaries is an important avenue for the prediction of protein structure, function, evolution, and design. Recent research on protein domain boundary prediction has been mainly based on widely known machine learning techniques. In this paper, we propose a new machine learning based domain predictor namely, DomNet that can show a more accurate and stable predictive performance than the existing state-of-the-art models. The DomNet is trained using a novel compact domain profile, secondary structure, solvent accessibility information, and interdomain linker index to detect possible domain boundaries for a target sequence. The performance of the proposed model was compared to nine different machine learning models on the Benchmark_2 dataset in terms of accuracy, sensitivity, specificity, and correlation coefficient. The DomNet achieved the best performance with 71% accuracy for domain boundary identification in multidomains proteins. With the CASP7 benchmark dataset, it again demonstrated superior performance to contemporary domain boundary predictors such as DOMpro, DomPred, DomSSEA, DomCut, and DomainDiscovery.  相似文献   

7.
Identifying fruit disease manually is time-consuming, expert-required, and expensive; thus, a computer-based automated system is widely required. Fruit diseases affect not only the quality but also the quantity. As a result, it is possible to detect the disease early on and cure the fruits using computer-based techniques. However, computer-based methods face several challenges, including low contrast, a lack of dataset for training a model, and inappropriate feature extraction for final classification. In this paper, we proposed an automated framework for detecting apple fruit leaf diseases using CNN and a hybrid optimization algorithm. Data augmentation is performed initially to balance the selected apple dataset. After that, two pre-trained deep models are fine-tuning and trained using transfer learning. Then, a fusion technique is proposed named Parallel Correlation Threshold (PCT). The fused feature vector is optimized in the next step using a hybrid optimization algorithm. The selected features are finally classified using machine learning algorithms. Four different experiments have been carried out on the augmented Plant Village dataset and yielded the best accuracy of 99.8%. The accuracy of the proposed framework is also compared to that of several neural nets, and it outperforms them all.  相似文献   

8.
Machine learning (ML) algorithms are often used to design effective intrusion detection (ID) systems for appropriate mitigation and effective detection of malicious cyber threats at the host and network levels. However, cybersecurity attacks are still increasing. An ID system can play a vital role in detecting such threats. Existing ID systems are unable to detect malicious threats, primarily because they adopt approaches that are based on traditional ML techniques, which are less concerned with the accurate classification and feature selection. Thus, developing an accurate and intelligent ID system is a priority. The main objective of this study was to develop a hybrid intelligent intrusion detection system (HIIDS) to learn crucial features representation efficiently and automatically from massive unlabeled raw network traffic data. Many ID datasets are publicly available to the cybersecurity research community. As such, we used a spark MLlib (machine learning library)-based robust classifier, such as logistic regression (LR), extreme gradient boosting (XGB) was used for anomaly detection, and a state-of-the-art DL, such as a long short-term memory autoencoder (LSTMAE) for misuse attack was used to develop an efficient and HIIDS to detect and classify unpredictable attacks. Our approach utilized LSTM to detect temporal features and an AE to more efficiently detect global features. Therefore, to evaluate the efficacy of our proposed approach, experiments were conducted on a publicly existing dataset, the contemporary real-life ISCX-UNB dataset. The simulation results demonstrate that our proposed spark MLlib and LSTMAE-based HIIDS significantly outperformed existing ID approaches, achieving a high accuracy rate of up to 97.52% for the ISCX-UNB dataset respectively 10-fold cross-validation test. It is quite promising to use our proposed HIIDS in real-world circumstances on a large-scale.  相似文献   

9.
The nutritional value of perishable food items, such as fruits and vegetables, depends on their freshness levels. The existing approaches solve a binary class problem by classifying a known fruit\vegetable class into fresh or rotten only. We propose an automated fruits and vegetables categorization approach that first recognizes the class of object in an image and then categorizes that fruit or vegetable into one of the three categories: pure-fresh, medium-fresh, and rotten. We gathered a dataset comprising of 60K images of 11 fruits and vegetables, each is further divided into three categories of freshness, using hand-held cameras. The recognition and categorization of fruits and vegetables are performed through two deep learning models: Visual Geometry Group (VGG-16) and You Only Look Once (YOLO), and their results are compared. VGG-16 classifies fruits and vegetables and categorizes their freshness, while YOLO also localizes them within the image. Furthermore, we have developed an android based application that takes the image of the fruit or vegetable as input and returns its class label and its freshness degree. A comprehensive experimental evaluation of proposed approach demonstrates that the proposed approach can achieve a high accuracy and F1score on gathered FruitVeg Freshness dataset. The dataset is publicly available for further evaluation by the research community.  相似文献   

10.
Software-defined networking (SDN) represents a paradigm shift in network traffic management. It distinguishes between the data and control planes. APIs are then used to communicate between these planes. The controller is central to the management of an SDN network and is subject to security concerns. This research shows how a deep learning algorithm can detect intrusions in SDN-based IoT networks. Overfitting, low accuracy, and efficient feature selection is all discussed. We propose a hybrid machine learning-based approach based on Random Forest and Long Short-Term Memory (LSTM). In this study, a new dataset based specifically on Software Defined Networks is used in SDN. To obtain the best and most relevant features, a feature selection technique is used. Several experiments have revealed that the proposed solution is a superior method for detecting flow-based anomalies. The performance of our proposed model is also measured in terms of accuracy, recall, and precision. F1 rating and detection time Furthermore, a lightweight model for training is proposed, which selects fewer features while maintaining the model’s performance. Experiments show that the adopted methodology outperforms existing models.  相似文献   

11.
Malicious software (malware) is one of the main cyber threats that organizations and Internet users are currently facing. Malware is a software code developed by cybercriminals for damage purposes, such as corrupting the system and data as well as stealing sensitive data. The damage caused by malware is substantially increasing every day. There is a need to detect malware efficiently and automatically and remove threats quickly from the systems. Although there are various approaches to tackle malware problems, their prevalence and stealthiness necessitate an effective method for the detection and prevention of malware attacks. The deep learning-based approach is recently gaining attention as a suitable method that effectively detects malware. In this paper, a novel approach based on deep learning for detecting malware proposed. Furthermore, the proposed approach deploys novel feature selection, feature co-relation, and feature representations to significantly reduce the feature space. The proposed approach has been evaluated using a Microsoft prediction dataset with samples of 21,736 malware composed of 9 malware families. It achieved 96.01% accuracy and outperformed the existing techniques of malware detection.  相似文献   

12.
The global food supply constantly faces the threats of emerging crop diseases initiated by pathogens such as bacteria, fungi, and viruses. Plant diseases can cause significant economic and production losses in the agriculture industry, and early disease detection significantly mitigates losses. Monitoring the food quality and detecting pathogens during the food supply chain is essential in confirming the food's safety and reducing crop loss. This results in lowering production costs and increasing average yield in the agriculture industry. Considering the significant development of nanotechnology in biomedicine for human health monitoring, diagnostics, and treatment, there is an increasing interest in using nanotechnology in crop production, health, and plant science. This technology can allow continuous monitoring of plant health and on-site diagnostics of plant diseases. While many microneedle-based devices are previously reported for human health monitoring, diagnostics, and treatment, the application of this technology to agriculture started relatively recently. This review investigates the recent development of microneedle technology in food and crop health, where the most state-of-the-art microneedle-based devices are utilized for plant drug delivery, disease monitoring, and diagnosis. Finally, the current challenges and future directions in developing microneedle technology for food and crop health are discussed.  相似文献   

13.
Artificial intelligence, which has recently emerged with the rapid development of information technology, is drawing attention as a tool for solving various problems demanded by society and industry. In particular, convolutional neural networks (CNNs), a type of deep learning technology, are highlighted in computer vision fields, such as image classification and recognition and object tracking. Training these CNN models requires a large amount of data, and a lack of data can lead to performance degradation problems due to overfitting. As CNN architecture development and optimization studies become active, ensemble techniques have emerged to perform image classification by combining features extracted from multiple CNN models. In this study, data augmentation and contour image extraction were performed to overcome the data shortage problem. In addition, we propose a hierarchical ensemble technique to achieve high image classification accuracy, even if trained from a small amount of data. First, we trained the UC-Merced land use dataset and the contour images for each image on pretrained VGGNet, GoogLeNet, ResNet, DenseNet, and EfficientNet. We then apply a hierarchical ensemble technique to the number of cases in which each model can be deployed. These experiments were performed in cases where the proportion of training datasets was 30%, 50%, and 70%, resulting in a performance improvement of up to 4.68% compared to the average accuracy of the entire model.  相似文献   

14.
In the information era, the core business and confidential information of enterprises/organizations is stored in information systems. However, certain malicious inside network users exist hidden inside the organization; these users intentionally or unintentionally misuse the privileges of the organization to obtain sensitive information from the company. The existing approaches on insider threat detection mostly focus on monitoring, detecting, and preventing any malicious behavior generated by users within an organization’s system while ignoring the imbalanced ground-truth insider threat data impact on security. To this end, to be able to detect insider threats more effectively, a data processing tool was developed to process the detected user activity to generate informationuse events, and formulated a Data Adjustment (DA) strategy to adjust the weight of the minority and majority samples. Then, an efficient ensemble strategy was utilized, which applied the extreme gradient boosting (XGBoost) model combined with the DA strategy to detect anomalous behavior. The CERT dataset was used for an insider threat to evaluate our approach, which was a real-world dataset with artificially injected insider threat events. The results demonstrated that the proposed approach can effectively detect insider threats, with an accuracy rate of 99.51% and an average recall rate of 98.16%. Compared with other classifiers, the detection performance is improved by 8.76%.  相似文献   

15.
Dataset dependence affects many real-life applications of machine learning: the performance of a model trained on a dataset is significantly worse on samples from another dataset than on new, unseen samples from the original one. This issue is particularly acute for small and somewhat specific databases in medical applications; the automated recognition of melanoma from skin lesion images is a prime example. We document dataset dependence in dermoscopic skin lesion image classification using three publicly available medium size datasets. Standard machine learning techniques aimed at improving the predictive power of a model might enhance performance slightly, but the gain is small, the dataset dependence is not reduced, and the best combination depends on model details. We demonstrate that simple differences in image statistics account for only 5% of the dataset dependence. We suggest a solution with two essential ingredients: using an ensemble of heterogeneous models, and training on a heterogeneous dataset. Our ensemble consists of 29 convolutional networks, some of which are trained on features considered important by dermatologists; the networks' output is fused by a trained committee machine. The combined International Skin Imaging Collaboration dataset is suitable for training, as it is multi-source, produced by a collaboration of a number of clinics over the world. Building on the strengths of the ensemble, it is applied to a related problem as well: recognizing melanoma based on clinical (non-dermoscopic) images. This is a harder problem as both the image quality is lower than those of the dermoscopic ones and the available public datasets are smaller and scarcer. We explored various training strategies and showed that 79% balanced accuracy can be achieved for binary classification averaged over three clinical datasets.  相似文献   

16.
Medical image steganography aims to increase data security by concealing patient-personal information as well as diagnostic and therapeutic data in the spatial or frequency domain of radiological images. On the other hand, the discipline of image steganalysis generally provides a classification based on whether an image has hidden data or not. Inspired by previous studies on image steganalysis, this study proposes a deep ensemble learning model for medical image steganalysis to detect malicious hidden data in medical images and develop medical image steganography methods aimed at securing personal information. With this purpose in mind, a dataset containing brain Magnetic Resonance (MR) images of healthy individuals and epileptic patients was built. Spatial Version of the Universal Wavelet Relative Distortion (S-UNIWARD), Highly Undetectable Stego (HUGO), and Minimizing the Power of Optimal Detector (MIPOD) techniques used in spatial image steganalysis were adapted to the problem, and various payloads of confidential data were hidden in medical images. The architectures of medical image steganalysis networks were transferred separately from eleven Dense Convolutional Network (DenseNet), Residual Neural Network (ResNet), and Inception-based models. The steganalysis outputs of these networks were determined by assembling models separately for each spatial embedding method with different payload ratios. The study demonstrated the success of pre-trained ResNet, DenseNet, and Inception models in the cover-stego mismatch scenario for each hiding technique with different payloads. Due to the high detection accuracy achieved, the proposed model has the potential to lead to the development of novel medical image steganography algorithms that existing deep learning-based steganalysis methods cannot detect. The experiments and the evaluations clearly proved this attempt.  相似文献   

17.
Globally, Pakistan ranks 4 in cotton production, 6 as an importer of raw cotton, and 3 in cotton consumption. Nearly 10% of GDP and 55% of the country's foreign exchange earnings depend on cotton products. Approximately 1.5 million people in Pakistan are engaged in the cotton value chain. However, several diseases such as Mildew, Leaf Spot, and Soreshine affect cotton production. Manual diagnosis is not a good solution due to several factors such as high cost and unavailability of an expert. Therefore, it is essential to develop an automated technique that can accurately detect and recognize these diseases at their early stages. In this study, a new technique is proposed using deep learning architecture with serially fused features and the best feature selection. The proposed architecture consists of the following steps: (a) a self-collected dataset of cotton diseases is prepared and labeled by an expert; (b) data augmentation is performed on the collected dataset to increase the number of images for better training at the earlier step; (c) a pre-trained deep learning model named ResNet101 is employed and trained through a transfer learning approach; (d) features are computed from the third and fourth last layers and serially combined into one matrix; (e) a genetic algorithm is applied to the combined matrix to select the best points for further recognition. For final recognition, a Cubic SVM approach was utilized and validated on a prepared dataset. On the newly prepared dataset, the highest achieved accuracy was 98.8% using Cubic SVM, which shows the perfection of the proposed framework..  相似文献   

18.
Recently, the Erebus attack has proved to be a security threat to the blockchain network layer, and the existing research has faced challenges in detecting the Erebus attack on the blockchain network layer. The cloud-based active defense and one-sidedness detection strategies are the hindrances in detecting Erebus attacks. This study designs a detection approach by establishing a ReliefF_WMRmR-based two-stage feature selection algorithm and a deep learning-based multimodal classification detection model for Erebus attacks and responding to security threats to the blockchain network layer. The goal is to improve the performance of Erebus attack detection methods, by combining the traffic behavior with the routing status based on multimodal deep feature learning. The traffic behavior and routing status were first defined and used to describe the attack characteristics at diverse stages of s leak monitoring, hidden traffic overlay, and transaction identity forgery. The goal is to clarify how an Erebus attack affects the routing transfer and traffic state on the blockchain network layer. Consequently, detecting objects is expected to become more relevant and sensitive. A two-stage feature selection algorithm was designed based on ReliefF and weighted maximum relevance minimum redundancy (ReliefF_WMRmR) to alleviate the overfitting of the training model caused by redundant information and noise in multiple source features of the routing status and traffic behavior. The ReliefF algorithm was introduced to select strong correlations and highly informative features of the labeled data. According to WMRmR, a feature selection framework was defined to eliminate weakly correlated features, eliminate redundant information, and reduce the detection overhead of the model. A multimodal deep learning model was constructed based on the multilayer perceptron (MLP) to settle the high false alarm rates incurred by multisource data. Using this model, isolated inputs and deep learning were conducted on the selected routing status and traffic behavior. Redundant intermodal information was removed because of the complementarity of the multimodal network, which was followed by feature fusion and output feature representation to boost classification detection precision. The experimental results demonstrate that the proposed method can detect features, such as traffic data, at key link nodes and route messages in a real blockchain network environment. Additionally, the model can detect Erebus attacks effectively. This study provides novelty to the existing Erebus attack detection by increasing the accuracy detection by 1.05%, the recall rate by 2.01%, and the F1-score by 2.43%.  相似文献   

19.
Attacks on websites and network servers are among the most critical threats in network security. Network behavior identification is one of the most effective ways to identify malicious network intrusions. Analyzing abnormal network traffic patterns and traffic classification based on labeled network traffic data are among the most effective approaches for network behavior identification. Traditional methods for network traffic classification utilize algorithms such as Naive Bayes, Decision Tree and XGBoost. However, network traffic classification, which is required for network behavior identification, generally suffers from the problem of low accuracy even with the recently proposed deep learning models. To improve network traffic classification accuracy thus improving network intrusion detection rate, this paper proposes a new network traffic classification model, called ArcMargin, which incorporates metric learning into a convolutional neural network (CNN) to make the CNN model more discriminative. ArcMargin maps network traffic samples from the same category more closely while samples from different categories are mapped as far apart as possible. The metric learning regularization feature is called additive angular margin loss, and it is embedded in the object function of traditional CNN models. The proposed ArcMargin model is validated with three datasets and is compared with several other related algorithms. According to a set of classification indicators, the ArcMargin model is proofed to have better performances in both network traffic classification tasks and open-set tasks. Moreover, in open-set tasks, the ArcMargin model can cluster unknown data classes that do not exist in the previous training dataset.  相似文献   

20.
In recent years, the number of exposed vulnerabilities has grown rapidly and more and more attacks occurred to intrude on the target computers using these vulnerabilities such as different malware. Malware detection has attracted more attention and still faces severe challenges. As malware detection based traditional machine learning relies on exports’ experience to design efficient features to distinguish different malware, it causes bottleneck on feature engineer and is also time-consuming to find efficient features. Due to its promising ability in automatically proposing and selecting significant features, deep learning has gradually become a research hotspot. In this paper, aiming to detect the malicious payload and identify their categories with high accuracy, we proposed a packet-based malicious payload detection and identification algorithm based on object detection deep learning network. A dataset of malicious payload on code execution vulnerability has been constructed under the Metasploit framework and used to evaluate the performance of the proposed malware detection and identification algorithm. The experimental results demonstrated that the proposed object detection network can efficiently find and identify malicious payloads with high accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号