首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 318 毫秒
1.
Can quantum dots (Qdots) act as relevant intracellular probes to investigate routing of ligands in live cells? The intracellular trafficking of Qdots that were coupled to the plant toxin ricin, Shiga toxin, or the ligand transferrin (Tf) was studied by confocal fluorescence microscopy. The Tf:Qdots were internalized by clathrin-dependent endocytosis as fast as Tf, but their recycling was blocked. Unlike Shiga toxin, the Shiga:Qdot bioconjugate was not routed to the Golgi apparatus. The internalized ricin:Qdot bioconjugates localized to the same endosomes as ricin itself but could not be visualized in the Golgi apparatus. Importantly, we find that the endosomal accumulation of ricin:Qdots affects endosome-to-Golgi transport of both ricin and Shiga toxin: Transport of ricin was reduced whereas transport of Shiga toxin was increased. In conclusion, the data reveal that, although coupling of Qdots to a ligand does not necessarily change the endocytic pathway normally used by the ligands studied, it appears that the ligand-coupled Qdot nanoparticles can be arrested within endosomes and somehow perturb the normal endosomal sorting in cells. Thus, the results demonstrate that Qdots may have severe consequences on cell physiology.  相似文献   

2.
We describe a method for multiplexed analysis of proteins using fluorescently encoded microbeads. The sensitivity of our method is comparable to the sensitivity obtained by enzyme-linked immunosorbent assay while only 5 µl sample volumes are needed. Streptavidin-coated, 1 µm beads are encoded with a combination of fluorophores at different intensity levels. As a proof of concept, we demonstrate that 27 microbead populations can be readily encoded by affinity conjugation using three intensity levels for each of three different biotinylated fluorescent dyes. Four populations of encoded microbeads are further conjugated with biotinylated capture antibodies and then combined and immobilized in a microfluidic flow cell for multiplexed protein analysis. Using four uniquely encoded microbead populations, we show that a cancer biomarker and three cytokine proteins can be analysed quantitatively in the picogram per millilitre range by fluorescence microscopy in a single assay. Our method will allow for the fabrication of high density, bead-based antibody arrays for multiplexed protein analysis using integrated microfluidic devices and automated sample processing.  相似文献   

3.
Separation of bioconjugated quantum dots using capillary electrophoresis   总被引:1,自引:0,他引:1  
Capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection was used to separate different bioconjugated CdSe/ZnS quantum dots (QDs). The QD nanocrystals studied were conjugated to the biomolecules streptavidin, biotin, and immunoglobulin G. The bioconjugated QDs showed different electrophoretic mobilities, which appear to depend upon the biomolecule that is attached to the QD and the buffer solution used. The use of a polymeric additive into the CE run buffer improved the resolution of the bioconjugates. Under CE conditions, the interaction between QD bioconjugates containing streptavidin (QDSt) and biotin (QDBi) was monitored. Under a given set of experimental conditions, the fluorescence intensity of QDSt and QDBi emitting light at 655 nm indicated that about 90% of QDBi complexed with 70% of QDSt. A two-color experiment that made use of two different sizes of QD (i.e., 585 and 655 nm) indicated that 30% of the 655 nm QDBi complexed with 53% of the 585 nm QDSt. The use of QDs with different emission properties allows the selective monitoring of two different wavelengths while using one single excitation source. This, in turn, allowed the monitoring of overlapping peaks in the electropherogram when newly formed products resulting from the interaction of the two bioconjugated QDs appeared.  相似文献   

4.
The marriage of nanomaterials with biology has produced a new generation of technologies that can profoundly impact biological and biomedical research. Quantum dots (Qdots) are an archetype for this hybrid research area and have gained popularity and interest from diverse research communities because of their unique and tunable optical properties. In this Review, we will describe their history and development, optical and electronic properties, and applications in biology and medicine. A critical evaluation of barriers impacting current Qdot technologies will be discussed and insights into the future outlook of the field will be explored.  相似文献   

5.
Quantum dots (Qdots) are nanoparticles exhibiting fluorescent properties that can be used for cell staining. We present here the development of quantum dots conjugated to Annexin V for specific targeting of apoptotic cells, for both apoptosis detection and staining of apoptotic "living" cells. For that purpose, Qdots Streptavidin Conjugates are coupled to biotinylated Annexin V, a 35-kDa protein which specifically recognizes and binds to phosphatidylserine (PS) moieties present on the outer membrane of apoptotic cells and not on healthy or necrotic cells. By using Annexin V, our Qdots probes are made specific for apoptotic cells. Staining of apoptotic cells was checked using fluorescence and confocal microscopy techniques and nonfixed cells. It is shown here that Qdots are insensitive to bleaching after prolonged exposure as opposed to organic dyes. This makes Qdots excellent candidates to continuously follow fast changes occurring at the membrane of apoptotic cells and facilitates time-lapse imaging as they alleviate any bleaching issue.  相似文献   

6.
The development of a chip-based sensor array composed of individually addressable agarose microbeads has been demonstrated for the rapid detection of DNA oligonucleotides. Here, a "plug and play" approach allows for the simple incorporation of various biotinylated DNA capture probes into the bead-microreactors, which are derivatized in each case with avidin docking sites. The DNA capture probe containing microbeads are selectively arranged in micromachined cavities localized on silicon wafers. The microcavities possess trans-wafer openings, which allow for both fluid flow through the microreactors/analysis chambers and optical access to the chemically sensitive microbeads. Collectively, these features allow the identification and quantitation of target DNA analytes to occur in near real time using fluorescence changes that accompany binding of the target sample. The unique three-dimensional microenvironment within the agarose bead and the microfluidics capabilities of the chip structure afford a fully integrated package that fosters rapid analyses of solutions containing complex mixtures of DNA oligomers. These analyses can be completed at room temperature through the use of appropriate hybridization buffers. For applications requiring analysis of < or = 10(2) different DNA sequences, the hybridization times and point mutation selectivity factors exhibited by this bead array method exceed in many respects the operational characteristics of the commonly utilized planar DNA chip technologies. The power and utility of this microbead array DNA detection methodology is demonstrated here for the analysis of fluids containing a variety of similar 18-base oligonucleotides. Hybridization times on the order of minutes with point mutation selectivity factors greater than 10000 and limit of detection values of approximately 10(-13) M are obtained readily with this microbead array system.  相似文献   

7.
This study proposes a method for in situ local deoxyribonucleic acid (DNA) replication and detection in a long DNA strand through laser‐induced heating and strong avidin–biotin binding. To achieve the target DNA replication, dielectrophoresis was generated to stretch and immobilise DNA strands on both ends of the electrode. Subsequently, local DNA sequences were replicated using thermal cycles generated by laser‐induced heating. Replicated double‐stranded DNA products were captured in situ on a solid surface and detected using the fluorescence intensity of quantum dots (Qdots). The results revealed that after six laser‐induced thermal cycles, the replicated local DNA sequence could be detected by analysing the difference between Qdot fluorescent intensity before and after replication. The proposed method is expected to improve the efficiency of biosample gene sequence analysis.Inspec keywords: DNA, molecular biophysics, fluorescence, electrophoresis, biochemistry, molecular configurations, quantum dots, laser beam applications, biothermicsOther keywords: laser‐induced heating, long DNA strand, target DNA replication, DNA strands, local DNA sequences, thermal cycles, replicated double‐stranded DNA products, replicated local DNA sequence, in situ DNA replication, in situ local deoxyribonucleic acid replication, strong avidin‐biotin binding, biosample gene sequence analysis, Qdot fluorescent intensity, laser‐induced thermal cycles  相似文献   

8.
NIR‐emitting CdSeTe/CdS/ZnS core/shell/shell QD‐encoded microbeads are combined with common flow cytometry with one laser for multiplexed detection of hepatitis B virus (HBV). A facile one‐pot synthetic route is developed to prepare CdSeTe/CdS/ZnS core/shell/shell QDs with high photoluminescence quantum yield and excellent stability in liquid paraffin, and a Shirasu porous glass (SPG) membrane emulsification technique is applied to incorporate the QDs into polystyrene–maleic anhydride (PSMA) microbeads to obtain highly fluorescent QD‐encoded microbeads. The relatively wide NIR photoluminescence full width half maximum of the CdSeTe/CdS/ZnS QDs is used to develop a ‘single wavelength’ encoding method to obtain different optical codes by changing the wavelengh and emission intensity of the QDs incorporated into the microbeads. Moreover, a detection platform combining NIR‐emitting CdSeTe/CdS/ZnS QD‐encoded microbeads and Beckman Coulter FC 500 flow cytometry with one laser of 488 nm is successfully used to conduct a 2‐plex hybridization assay for hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and a 3‐plex hybridization assay for hepatitis B surface antibody (HBsAb), hepatitis B e antibody (HBeAb), and hepatitis B core antibody (HBcAb), which suggests the promising application of NIR QD‐encoded microbeads for multiplex immunoassays.  相似文献   

9.
The first application of nanocrystal (NC)-encoded microbeads to clinical proteomics is demonstrated by multiplexed detection of circulating autoantibodies, markers of systemic sclerosis. Two-color complexes, consisting of NC-encoded, antigen-covered beads, anti-antigen antibody or clinical serum samples, and dye-tagged detecting antibodies, were observed using flow cytometry assays and on the surface of single beads. The results of flow cytometry assays correlated with the ELISA technique and provided clear discrimination between the sera samples of healthy donors and patients with autoimmune disease. Microbead fluorescence signals exhibited narrow distribution regardless of their surface antigen staining, without the need of any fluorescence compensation-a parameter determining the limit of sensitivity of flow cytometry assays. In single bead measurements, less than 30 dye-labeled antibodies interacting with the topoI-specific antibodies at the surface of a bead have been detected by the emission of dye excited through the FRET from NCs. In this format, the antibody-bead interaction reaction turns specifically the fluorescence signal from dye label off and on, additionally increasing autoantibody detection sensitivity.  相似文献   

10.
采用嵌段聚合物P123为表面活性剂,以氯化铝和氯化钴为无机先驱物,采用溶胶-凝胶法合成介孔铝酸钴纳米粒子。X射线衍射(XRD)表明样品具有单一的尖晶石型结构,利用氮气吸附-脱附比表面测定仪测得不同焙烧温度样品的比表面积,发现700℃焙烧的样品比表面积最大,其比表面积为59.3m2/g,孔径为10.8nm。紫外可见光谱仪测示表明纳米铝酸钴样品为明亮的蓝色,在545nm、585nm和625nm处有三重吸收峰。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号