首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The past decade has seen an intensive effort to achieve optical imaging resolution beyond the diffraction limit. Apart from the Pendry-Veselago negative index superlens, implementation of which in optics faces challenges of losses and as yet unattainable fabrication finesse, other super-resolution approaches necessitate the lens either to be in the near proximity of the object or manufactured on it, or work only for a narrow class of samples, such as intensely luminescent or sparse objects. Here we report a new super-resolution microscope for optical imaging that beats the diffraction limit of conventional instruments and the recently demonstrated near-field optical superlens and hyperlens. This non-invasive subwavelength imaging paradigm uses a binary amplitude mask for direct focusing of laser light into a subwavelength spot in the post-evanescent field by precisely tailoring the interference of a large number of beams diffracted from a nanostructured mask. The new technology, which--in principle--has no physical limits on resolution, could be universally used for imaging at any wavelength and does not depend on the luminescence of the object, which can be tens of micrometres away from the mask. It has been implemented as a straightforward modification of a conventional microscope showing resolution better than λ/6.  相似文献   

2.
扫描近场光学显微镜的光纤探针   总被引:1,自引:0,他引:1  
刘秀梅  王佳 《光电工程》1999,26(2):25-29,34
扫描近场光学显微镜(SNOM)打破了传统光学显微镜的衍射极限分辨率,自80年代中期出现以来在10多年的时间内获得了迅速的发展,并在很多的领域有很广阔的应用前景。扫描探针的形状及针尖的大小是影响SNOM分辨率的关键因素之一。  相似文献   

3.
Super-resolution optical imaging techniques can break the optical diffraction limit, thus providing unique opportunities to visualize the microscopic world at the nanoscale. Although near-field optical microscopy techniques have been proven to achieve significantly improved imaging resolution, most near-field approaches still suffer from a narrow field of view (FOV) or difficulty in obtaining wide-field images in real time, which may limit their widespread and diverse applications. Here, the authors experimentally demonstrate an optical microscope magnification and image enhancement approach by using a submillimeter-sized solid immersion lens (SIL) assembled by densely-packed 15 nm TiO2 nanoparticles through a silicone oil two-step dehydration method. This TiO2 nanoparticle-assembled SIL can achieve both high transparency and high refractive index, as well as sufficient mechanical strength and easy-to-handle size, thus providing a fast, wide-field, real-time, non-destructive, and low-cost solution for improving the quality of optical microscopic observation of a variety of samples, including nanomaterials, cancer cells, and living cells or bacteria under conventional optical microscopes. This study provides an attractive alternative to simplify the fabrication and applications of high-performance SILs.  相似文献   

4.
Nedev S  Urban AS  Lutich AA  Feldmann J 《Nano letters》2011,11(11):5066-5070
Here we introduce a new paradigm of far-field optical lithography, optical force stamping lithography. The approach employs optical forces exerted by a spatially modulated light field on colloidal nanoparticles to rapidly stamp large arbitrary patterns comprised of single nanoparticles onto a substrate with a single-nanoparticle positioning accuracy well beyond the diffraction limit. Because the process is all-optical, the stamping pattern can be changed almost instantly and there is no constraint on the type of nanoparticle or substrates used.  相似文献   

5.
Achieving control of light-material interactions for photonic device applications at nanoscale dimensions will require structures that guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. This cannot be achieved by using conventional waveguides or photonic crystals. It has been suggested that electromagnetic energy can be guided below the diffraction limit along chains of closely spaced metal nanoparticles that convert the optical mode into non-radiating surface plasmons. A variety of methods such as electron beam lithography and self-assembly have been used to construct metal nanoparticle plasmon waveguides. However, all investigations of the optical properties of these waveguides have so far been confined to collective excitations, and direct experimental evidence for energy transport along plasmon waveguides has proved elusive. Here we present observations of electromagnetic energy transport from a localized subwavelength source to a localized detector over distances of about 0.5 microm in plasmon waveguides consisting of closely spaced silver rods. The waveguides are excited by the tip of a near-field scanning optical microscope, and energy transport is probed by using fluorescent nanospheres.  相似文献   

6.
Mechanical alloying of iron–carbon (Fe–C) mixture powders was performed at various milling duration (2, 4, 6 and 8 h) and with different carbon content (1, 2, 3 and 4 wt.%). The milled powders were consolidated by cold pressing at 400 MPa and sintering at 1150 °C. The sintered samples were examined under an optical microscope and a scanning electron microscope for microstructure evolution, and measured for density, Rockwell F and Vickers hardness. This technique has produced Fe–C alloy with pearlite structure at lower temperature compared to conventional technique. With increasing milling time, more pearlite was formed which improved the hardness. Milling beyond 6 h, however, decreased the hardness due to the presence of higher porosity because hardened powder hindered densification. Similarly, the hardness value reached the maximum at 2% carbon before decreasing at 3% and 4% carbon levels due to the residual graphite.  相似文献   

7.
Wang Y  Srituravanich W  Sun C  Zhang X 《Nano letters》2008,8(9):3041-3045
Nearfield scanning optical microscopy (NSOM) offers a practical means of optical imaging, optical sensing, and nanolithography at a resolution below the diffraction limit of the light. However, its applications are limited due to the strong attenuation of the light transmitted through the subwavelength aperture. To solve this problem, we report the development of plasmonic nearfield scanning optical microscope with an efficient nearfield focusing. By exciting surface plasmons, plasmonic NSOM probes are capable of confining light into a 100 nm spot. We show by nearfield lithography experiments that the intensity at the near field is at least one order stronger than the intensity obtained from the conventional NSOM probes under the same illumination condition. Such a high efficiency can enable plasmonic NSOM as a practical tool for nearfield lithography, data storage, cellular visualization, and many other applications requiring efficient transmission with high resolution.  相似文献   

8.
Wang CC  Lin JY  Jian HJ  Lee CH 《Applied optics》2007,46(30):7460-7463
We propose an optical thin-film characterization technique, differential optical sectioning interference microscopy (DOSIM), for simultaneously measuring the refractive indices and thicknesses of transparent thin films with submicrometer lateral resolution. DOSIM obtains the depth and optical phase information of a thin film by using a dual-scan concept in differential optical sectioning microscopy combined with the Fabry-Perot interferometric effect and allows the solution of refractive index and thickness without the 2pi phase-wrapping ambiguity. Because DOSIM uses a microscope objective as the probe, its lateral resolution achieves the diffraction limit. As a demonstration, we measure the refractive indices and thicknesses of SiO2 thin films grown on Si substrate and indium-tin-oxide thin films grown on a glass substrate. We also compare the measurement results of DOSIM with those of a conventional ellipsometer and an atomic force microscope.  相似文献   

9.
We present a detailed experimental study of a new through-focus technique to measure critical dimension linewidth with nanometer sensitivity using a bright field optical microscope. This method relies on analyzing intensity gradients in optical images at different focus positions, here defined as the focus metric (FM) signature. The contrast of an optical image of a structured target, where a particular structure is repeated several times, varies greatly as it is moved through-focus if the spacing between the structures is such that the scattered field from the features interferes. Complex, distinguishable through-focus optical response occurs under this condition giving rise to the formation of several cyclic high and low contrast images. As a result it exhibits several FM signature peaks as opposed to a single FM peak for structures nearly isolated. This complex optical behavior is very sensitive to the dimensions of the target geometry. By appropriately analyzing the through-focus optical image, information can be obtained regarding the target. An array of lines is used as a structured target. Linewidth measurements were made by using experimental through-focus optical data obtained using a bright field microscope and simulated optical data. The optical results are compared with reference metrology tools such as a critical dimension atomic force microscope and critical dimension scanning electron microscope.  相似文献   

10.
Far-field optical superlens   总被引:2,自引:0,他引:2  
Liu Z  Durant S  Lee H  Pikus Y  Fang N  Xiong Y  Sun C  Zhang X 《Nano letters》2007,7(2):403-408
Far-field optical lens resolution is fundamentally limited by diffraction, which typically is about half of the wavelength. This is due to the evanescent waves carrying small scale information from an object that fades away in the far field. A recently proposed superlens theory offers a new approach by surface excitation at the negative index medium. We introduce a far-field optical superlens (FSL) that is capable of imaging beyond the diffraction limit. The FSL significantly enhances the evanescent waves of an object and converts them into propagating waves that are measured in the far field. We show that a FSL can image a subwavelength object consisting of two 50 nm wide lines separated by 70 nm working at 377 nm wavelength. The optical FSL promises new potential for nanoscale imaging and lithography.  相似文献   

11.
Fatigue tests were performed on a spheroidal graphite cast iron in four point plane bending under constant stress amplitude and block loading conditions. The microstructure of this material has a ll's eyes' appearance, i.e. the spheroids of graphite are surrounded by ferrite and these nodules and ferrite zones are included in a pearlitic matrix. Scanning electronic microscope observations were carried out at different fractions of life for constant stress amplitude loadings above and below the conventional endurance limit. Non-propagating micro-cracks were observed at a stress level equal to the conventional endurance limit. These observations showed that another limit can be defined below the conventional endurance one, i.e. one below which micro-cracks were not observed to initiate in the matrix. These cracks were found to arrest at the ferrite/pearlite interface when the material was tested below this new limit. This concept was used to rationalize fatigue results from tests with loading in blocks above and below the conventional endurance limit.  相似文献   

12.
A line-scanning tomographic optical microscope system requires precise rotation of the scanning line. Center of rotation error introduced by both the imprecision of optical and mechanical components is studied experimentally and via simulations. It was shown that a practical tolerance limit can be chosen where the influence of the investigated error on the reconstructed image quality remains insignificant. An effective and simply practical solution was presented to keep the center of rotation error below this tolerance limit and the spatial resolution of the reconstructed image close to the diffraction limit.  相似文献   

13.
An electron microscope is a wave optical instrument where the object information is carried by an electron wave. However, an important information, the phase of the electron wave, is lost, because only intensities can be recorded in a conventional electron micrograph. Off-axis electron holography solves this “phase problem” by encoding amplitude and phase information in an interference pattern, the so-called hologram. After reconstruction, a rather unrestricted wave optical analysis can be performed on a computer. The possibilities as well as the current limitations of off-axis electron holography at atomic dimensions are discussed, and they are illustrated at two applications of structure characterization of ε-NbN and YBCO-1237. Finally, an electron microscope equipped with a Cs-corrector, a monochromator, and a Möllenstedt biprism is outlined for subangstrom holography.  相似文献   

14.
Abstract

In optical microscopy, the a priori knowledge of the nature of the object to be imaged and of the transfer function of the optical system allows the improvement of the limit of resolution beyond classical bounds derived from consideration of the optical transfer only. This paper presents a quantitative study of this improvement as a function of the object model and of the image noise. The method is derived from recent studies about the limit of resolution in image restoration. An application to linewidth measurement on integrated circuits is shown.  相似文献   

15.
Optoelectronic consumer products that are widely employed in the office and home attract attention for optical sensor applications due to (1) their cost advantage over analytical instruments produced only in small quantities, (2) robustness in operation due to the detailed manufacturability improvements, and (3) ease of operation. We demonstrate here a new approach for quantitative chemical/biochemical sensing when analog signals are acquired from conventional optical disk drives, and these signals are used for quantitative detection of optical changes of sensor films deposited on conventional CD and DVD optical disks. Because we do not alter manufacturing process of optical disks, any disk can be employed for deposition and readout of sensor films. The optical disk drives also perform their original function of reading and writing digital content to optical media because no optical modifications are introduced to obtain the analog signal. Such a sensor platform is quite universal and can be applied for chemical and biological quantitative detection, as well as for monitoring of changes of physical properties of regions deposited onto a CD or DVD (e.g., during combinatorial screening of materials). As a model example, we demonstrate the concept using chemical detection of ionic species such as Ca2+ in liquids (e.g., blood, urine, or water). Colorimetric calcium-sensitive sensor films were deposited onto a DVD, exposed to water with different concentrations of Ca2+, and quantified in the optical disk drive. The developed lab-on-DVD system demonstrated a 5 ppm detection limit of Ca2+ determinations, similar or slightly better than that achieved using a conventional fiber-optic portable spectrometer. This detection limit corresponded to a 0.023 absorbance unit resolution, as determined by the measurement of the same colorimetric films with a portable spectrometer. Determinations of Ca2+ unknowns using the lab-on-DVD system demonstrated +/-5 ppm accuracy and 2-5% relative standard deviation precision in predicting 100 ppm Ca2+.  相似文献   

16.
Spray-dried yttria-doped zirconia granules were made transparent by immersion in a liquid and the internal structure was characterized using an optical microscope. This unique technique was found to be applicable for this system by using an immersion liquid with appropriate refractive index, and it enabled observation of the internal structure to be made over the entire volume of granules, in clear contrast to conventional SEM observation. Distinct features, which were considered to be agglomerates, were found in the granules. This was supported by SEM observation.  相似文献   

17.
Optical forces, generally arising from changes of field gradients or linear momentum carried by photons, form the basis for optical trapping and manipulation. Advances in optical forces help to reveal the nature of light–matter interactions, giving answers to a wide range of questions and solving problems across various disciplines, and are still yielding new insights in many exciting sciences, particularly in the fields of biological technology, material applications, and quantum sciences. This review focuses on recent advances in optical forces, ranging from fundamentals to applications for biological exploration. First, the basics of different types of optical forces with new light–matter interaction mechanisms and near-field techniques for optical force generation beyond the diffraction limit with nanometer accuracy are described. Optical forces for biological applications from in vitro to in vivo are then reviewed. Applications from individual manipulation to multiple assembly into functional biophotonic probes and soft-matter superstructures are discussed. At the end future directions for application of optical forces for biological exploration are provided.  相似文献   

18.
Optical antennas have generated much interest in recent years due to their ability to focus optical energy beyond the diffraction limit, benefiting a broad range of applications such as sensitive photodetection, magnetic storage, and surface-enhanced Raman spectroscopy. To achieve the maximum field enhancement for an optical antenna, parameters such as the antenna dimensions, loading conditions, and coupling efficiency have been previously studied. Here, we present a framework, based on coupled-mode theory, to achieve maximum field enhancement in optical antennas through optimization of optical antennas' radiation characteristics. We demonstrate that the optimum condition is achieved when the radiation quality factor (Q(rad)) of optical antennas is matched to their absorption quality factor (Q(abs)). We achieve this condition experimentally by fabricating the optical antennas on a dielectric (SiO(2)) coated ground plane (metal substrate) and controlling the antenna radiation through optimizing the dielectric thickness. The dielectric thickness at which the matching condition occurs is approximately half of the quarter-wavelength thickness, typically used to achieve constructive interference, and leads to ~20% higher field enhancement relative to a quarter-wavelength thick dielectric layer.  相似文献   

19.
We report on optical image contrast for a specific apertureless near-field optical microscope. We demonstrate that the main part of the optical image's contrast results from the sample's topography. The coupling mechanism is analyzed, and we show that the microscope can be regarded as an interferometer that sensitively detects near-field components. However, in the basic configuration the reference field of the interferometer is coupled to the topography. Finally, it is demonstrated that, by controlling the phase of the reference field, one can largely decorrelate the optical image from the topography.  相似文献   

20.
Near-field scanning optical microscopy (NSOM) offers high optical resolution beyond the diffraction limit for various applications in imaging, sensing, and lithography; however, for many applications the very low brightness of NSOM aperture probes is a major constraint. Here, we report a novel NSOM aperture probe that gives a 100× higher throughput and 40× increased damage threshold than conventional near-field aperture probes. These brighter probes facilitate near-field imaging of single molecules with apertures as small as 45 nm in diameter. We achieve this improvement by nanostructuring the probe and by employing a novel variant of extraordinary optical transmission, relying solely on a single aperture and a coupled waveguide. Comprehensive electromagnetic simulations show good agreement with the measured transmission spectra. Due to their significantly increased throughput and damage threshold, these resonant configuration probes provide an important step forward for near-field applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号