首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this study, we aim to evaluate the global scientific production of stem cell research for the past 16 years and provide insights into the characteristics of the stem cell research activities and identify patterns, tendencies, or regularities that may exist in the papers. Data are based on the online version of SCI, Web of Science from 1991 to 2006. Articles referring to stem cell were assessed by many aspects including exponential fitting the trend of publication outputs during 1991–2006, distribution of source title, author keyword, and keyword plus analysis. Based on the exponential fitting the yearly publicans of the last decade, it can also be calculated that, in 2,011, the number of scientific papers on the topic of stem-cell will be twice of the number of publications in 2006. Synthetically analyzing three kinds of keywords, it can be concluded that application of stem cell transplantation technology to human disease therapy, especially research related on “embryonic stem cell” and “mesenchymal stem cell” is the orientation of all the stem cell research in the 21st century. This new bibliometric method can help relevant researchers realize the panorama of global stem cell research, and establish the further research direction.  相似文献   

2.
In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the ‘omics’ technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical—failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.  相似文献   

3.
Differentiation of human bone marrow-derived mesenchymal stem cells(hMSCs)is regulated by a variety of cues of their surrounding microenvironments.In particular,mechanical properties of cell culture matrices have been recently disclosed to play a pivotal role in stem cell differentiation.However,it remains elusive how viscosity affects the chondrogenic differentiation of hMSCs during three-dimensional(3 D)culture.In this study,a 3 D culture system that was established by embedding viscous gelatin solution in chemically cross-linked gelatin hydrogels was used for 3 D culture of hMSCs in gelatin solutions with different viscosities.The influence of solution viscosity on chondrogenic differentiation of hMSCs was investigated.Viscous gelatin solutions promoted cell proliferation in the order of low,middle and high viscosity while elastic hydrogels restricted cell proliferation.High viscosity gelatin solution led to increased production of the cartilaginous matrix.Under the synergistic stimulation of chondrogenic induction factors,high viscosity was beneficial for the chondrogenic differentiation of hMSCs.The results suggested the role of viscosity should be considered as one of the dominant mechanical cues affecting stem cell differentiation.  相似文献   

4.
The biocompatibility of NiTi after laser welding was studied by examining the in vitro (mesenchymal stem cell) MSC responses at different sets of time varying from early (4 to 12 h) to intermediate phases (1 and 4 days) of cell culture. The effects of physical (surface roughness and topography) and chemical (surface Ti/Ni ratio) changes as a consequence of laser welding in different regions (WZ, HAZ, and BM) on the cell morphology and cell coverage were studied. The results in this research indicated that the morphology of MSCs was affected primarily by the topographical factors in the WZ: the well-defined and directional dendritic pattern and the presence of deeper grooves. The morphology of MSCs was not significantly modulated by surface roughness. Despite the possible initial Ni release in the medium during the cell culture, no toxic effect seemed to cause to MSCs as evidenced by the success of adhesion and spreading of the cells onto different regions in the laser weldment. The good biocompatibility of the NiTi laser weldment has been firstly reported in this study.  相似文献   

5.
Raman spectroscopy has been used to determine the chemical composition of materials for over 70 years. Recent spectacular advances in laser and CCD camera technology creating instruments with higher sensitivity and lower cost have initiated a strong resurgence in the technique, ranging from fundamental research to process control methodology. One such area of increased potential is in tissue engineering and regenerative medicine (TERM), where autologous cell culture, stem cell biology and growth of human cells on biomaterial scaffolds are of high importance. Traditional techniques for the in vitro analysis of biochemical cell processes involves cell techniques such as fixation, lysis or the use of radioactive or chemical labels which are time consuming and can involve the perpetuation of artefacts. Several studies have already shown the potential of Raman spectroscopy to provide useful information on key biochemical markers within cells, however, many of these studies have utilised micro- or confocal Raman to do this, which are not suited to the rapid and non-invasive monitoring of cells. For this study a versatile fit-for-purpose Raman spectrometer was used, employing a macro-sampling optical platform (laser spot size 100 μm at focus on the sample) to discriminate between different TERM relevant cell types and viable and non-viable cells. The results clearly show that the technique is capable of obtaining Raman spectra from live cells in a non-destructive, rapid and non-invasive manner, however, in these experiments it was not possible to discriminate between different cell lines. Despite this, notable differences were observed in the spectra obtained from viable and non-viable cells, showing significant changes in the spectral profiles of protein, DNA/RNA and lipid cell constituents after cell death. It is evident that the method employed here shows significant potential for further utilisation in TERM, providing data directly from live cells that fits within a quality assurance framework and provides the opportunity to analyse cells in a non-destructive manner.  相似文献   

6.
This study is an attempt to approach the intellectual structure of the stem cell research field 2004–2009 through a comprehensive author co-citation analysis (ACA), and to contribute to a better understanding of a field that has been brought to the forefront of research, therapy and political and public debates, which, hopefully, will in turn better inform research and policy. Based on a nearly complete and clean dataset of stem cell literature compiled from PubMed and Scopus, and using automatic author disambiguation to further improve results, we perform an exclusive all-author ACA of the 200 top-ranked researchers of the field by fractional citation count. We find that, despite the theoretically highly interdisciplinary nature of the field, stem cell research has been dominated by a few central medical research areas—cancer and regenerative medicine of the brain, the blood, the skin, and the heart—and a core of cell biologists trying to understand the nature and the molecular biology of stem cells along with biotechnology researchers investigating the practical identification, isolation, creation, and culturing of stem cells. It is also remarkably self-contained, drawing only on a few related areas of cell biology. This study also serves as a baseline against which the effectiveness of a range of author-based bibliometric methods and indicators can be tested, especially when based on less comprehensive datasets using less optimal analysis methods.  相似文献   

7.
Stem cells have attracted increasing research interest in the field of regenerative medicine because of their unique ability to differentiate into multiple cell lineages. However, controlling stem cell differentiation efficiently and improving the current destructive characterization methods for monitoring stem cell differentiation are the critical issues. To this end, multifunctional graphene–gold (Au) hybrid nanoelectrode arrays (NEAs) to: (i) investigate the effects of combinatorial physicochemical cues on stem cell differentiation, (ii) enhance stem cell differentiation efficiency through biophysical cues, and (iii) characterize stem cell differentiation in a nondestructive real‐time manner are developed. Through the synergistic effects of physiochemical properties of graphene and biophysical cues from nanoarrays, the graphene‐Au hybrid NEAs facilitate highly enhanced cell adhesion and spreading behaviors. In addition, by varying the dimensions of the graphene‐Au hybrid NEAs, improved stem cell differentiation efficiency, resulting from the increased focal adhesion signal, is shown. Furthermore, graphene‐Au hybrid NEAs are utilized to monitor osteogenic differentiation of stem cells electrochemically in a nondestructive real‐time manner. Collectively, it is believed the unique multifunctional graphene‐Au hybrid NEAs can significantly advance stem‐cell‐based biomedical applications.  相似文献   

8.
Cell separation is a key step in many biomedical research areas including biotechnology, cancer research, regenerative medicine, and drug discovery. While conventional cell sorting approaches have led to high‐efficiency sorting by exploiting the cell's specific properties, microfluidics has shown great promise in cell separation by exploiting different physical principles and using different properties of the cells. In particular, label‐free cell separation techniques are highly recommended to minimize cell damage and avoid costly and labor‐intensive steps of labeling molecular signatures of cells. In general, microfluidic‐based cell sorting approaches can separate cells using “intrinsic” (e.g., fluid dynamic forces) versus “extrinsic” external forces (e.g., magnetic, electric field, etc.) and by using different properties of cells including size, density, deformability, shape, as well as electrical, magnetic, and compressibility/acoustic properties to select target cells from a heterogeneous cell population. In this work, principles and applications of the most commonly used label‐free microfluidic‐based cell separation methods are described. In particular, applications of microfluidic methods for the separation of circulating tumor cells, blood cells, immune cells, stem cells, and other biological cells are summarized. Computational approaches complementing such microfluidic methods are also explained. Finally, challenges and perspectives to further develop microfluidic‐based cell separation methods are discussed.  相似文献   

9.
通过特定的基因组合与转染可以将已分化的体细胞诱导重编程为多潜能干细胞(iPS),是近年来干细胞研究领域最令人瞩目的一项新的干细胞制造技术.与胚胎干细胞(ES)不同,iPS细胞的制造不需要毁损胚胎,因而不会涉及更多的伦理学问题.iPS的出现不仅为体细胞重编程去分化机制的研究注入了新的活力,而且为疾病发生发展相关机制研究与特异的细胞治疗,特别是再生医学带来新的曙光.目前,iPS的研究尚处于初级阶段,文章就iPS的研究现状与应用前景进行综述和展望.  相似文献   

10.
A stem cell chip with peptide nanopatterned layer was fabricated to detect the effects of environmental toxins on human neural stem cells (HB1 x F3) electrochemically. The cell chip was recently developed as in vitro monitoring tool for determining the cell viability simply and rapidly compared to the conventional methods. However, cell chip composed of neural stem cells have not been reported due to the difficulties for maintaining its stemness and cell attachment on the artificial electrode surface, which is critical for sensitive detection of cell viability electrochemically. In this study, we fabricated peptide nanopatterned layer on gold electrode for increasing the affinity between the stem cell and an artificial electrode surface by self-assembly technique. After the confirmation of fabricated nanopatterned surface, neural stem cells were immobilized on chip surface and the viability was measured by electrochemical method. Thereafter, neural stem cells were treated with two kinds of common environmental toxins, and the intensities of reduction peak obtained by cyclic voltammetry (CV) were decreased with the increase of concentrations of environmental toxins. These electrochemical results were validated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Our newly developed stem cell chip can be used as useful label-free analysis tool for detecting drug effects or for assessing the toxicity electrochemically.  相似文献   

11.
Kafi MA  Kim TH  An JH  Choi JW 《Analytical chemistry》2011,83(6):2104-2111
A new strategy for on-site monitoring of cell cycle progression was proposed using cell chip technology. Cell synchronization has been utilized in intensive cellular research due to the fact that cells in different phases of the cell cycle exhibit different behaviors even when exposed to the same concentrations of drugs or toxicants. However, confirmation of cell cycle arrest in research is usually dependent on fluorescence-assisted cell sorting (FACS), which is laborious, time-consuming, and expensive. In this study, we employed a cell-chip-based electrochemical method to detect the cell-cycle-dependent electrochemical properties of cells. Electron transfer at the cell-electrode interface played a key role in our strategy and accurately reflected the redox activity of the cells in different phases. Rat pheochromocytoma cells were synchronized with thymidine and nocodazole, and well-defined current peaks from cells in the G1/S- and G2/M-phases were significantly different as determined by differential pulse voltammetry. FACS assay and Western blot analysis were used to validate the electrochemical findings. Hence, our cell-chip-based electrochemical method can be a useful tool in determining cell cycle progression easily and economically.  相似文献   

12.
Stem cell-based therapy has recently emerged for use in novel therapeutics for incurable diseases. For successful recovery from neurologic diseases, the most pivotal factor is differentiation and directed neuronal cell growth. In this study, we fabricated three different widths of a micro-pattern on polydimethylsiloxane (PDMS; 1, 2, and 4 microm). Surface modification of the PDMS was investigated for its capacity to manage proliferation and differentiation of neural-like cells from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). Among the micro-patterned PDMS fabrications, the 1 microm-patterned PDMS significantly increased cell proliferation and most of the cells differentiated into neuronal cells. In addition, the 1 microm-patterned PDMS induced an increase in cytosolic calcium, while the differentiated cells on the flat and 4 microm-patterned PDMS had no response. PDMS with a 1 microm pattern was also aligned to direct orientation within 10 degrees angles. Taken together, micro-patterned PDMS supported UCB-MSC proliferation and induced neural like-cell differentiation. Our data suggest that micro-patterned PDMS might be a guiding method for stem cell therapy that would improve its therapeutic action in neurological diseases.  相似文献   

13.
Cellular microenvironments are generally sophisticated, but crucial for regulating the functions of human pluripotent stem cells (hPSCs). Despite tremendous effort in this field, the correlation between the environmental factors—especially the extracellular matrix and soluble cell factors—and the desired cellular functions remains largely unknown because of the lack of appropriate tools to recapitulate in vivo conditions and/or simultaneously evaluate the interplay of different environment factors. Here, a combinatorial platform is developed with integrated microfluidic channels and nanofibers, associated with a method of high‐content single‐cell analysis, to study the effects of environmental factors on stem cell phenotype. Particular attention is paid to the dependence of hPSC short‐term self‐renewal on the density and composition of extracellular matrices and initial cell seeding densities. Thus, this combinatorial approach provides insights into the underlying chemical and physical mechanisms that govern stem cell fate decisions.  相似文献   

14.
Abstract

Stem cells are known for their potential to repair damaged tissues. The adhesion, growth and differentiation of stem cells are likely controlled by the surrounding microenvironment which contains both chemical and physical cues. Physical cues in the microenvironment, for example, nanotopography, were shown to play important roles in stem cell fate decisions. Thus, controlling stem cell behavior by nanoscale topography has become an important issue in stem cell biology. Nanotechnology has emerged as a new exciting field and research from this field has greatly advanced. Nanotechnology allows the manipulation of sophisticated surfaces/scaffolds which can mimic the cellular environment for regulating cellular behaviors. Thus, we summarize recent studies on nanotechnology with applications to stem cell biology, including the regulation of stem cell adhesion, growth, differentiation, tracking and imaging. Understanding the interactions of nanomaterials with stem cells may provide the knowledge to apply to cell–scaffold combinations in tissue engineering and regenerative medicine.  相似文献   

15.
The ability to self-renew and differentiate into multiple types of blood and immune cells renders hematopoietic stem and progenitor cells (HSPCs) valuable for clinical treatment of hematopoietic pathologies and as models of stem cell differentiation for tissue engineering applications. To study directed hematopoietic stem cell (HSC) differentiation and identify the conditions that recreate the native bone marrow environment, combinatorial biomaterials that exhibit lateral variations in chemical and mechanical properties are employed. New experimental approaches are needed to facilitate correlating cell differentiation stage with location in the culture system. We demonstrate that multivariate analysis of time-of-flight secondary ion mass spectrometry (TOF-SIMS) data can be used to identify the differentiation state of individual hematopoietic cells (HCs) isolated from mouse bone marrow. Here, we identify primary HCs from three distinct stages of B cell lymphopoiesis at the single cell level: HSPCs, common lymphoid progenitors, and mature B cells. The differentiation state of individual HCs in a test set could be identified with a partial least-squares discriminant analysis (PLS-DA) model that was constructed with calibration spectra from HCs of known differentiation status. The lowest error of identification was obtained when the intrapopulation spectral variation between the cells in the calibration and test sets was minimized. This approach complements the traditional methods that are used to identify HC differentiation stage. Further, the ability to gather mass spectrometry data from single HSCs cultured on graded biomaterial substrates may provide significant new insight into how HSPCs respond to extrinsic cues as well as the molecular changes that occur during cell differentiation.  相似文献   

16.
Robustness is a fundamental characteristic of biological systems since all living systems need to adapt to internal or external perturbations, unpredictable environments, stochastic events and unreliable components, and so on. A long‐term challenge in systems biology is to reveal the origin of robustness underlying molecular regulator network. In this study, a simple Boolean model is used to investigate the global dynamic properties and robustness of cardiac progenitor cell (CPC) induced pluripotent stem cell network that governs reprogramming and directed differentiation process. It is demonstrated that two major attractors correspond to source and target cell phenotypes, respectively, and two dominating attracting trajectories characterise the biological pathways between two major cell phenotypes. In particular, the experimentally observed transition between different cell phenotypes can be reproduced and explained theoretically. Furthermore, the robustness of major attractors and trajectories is largely maintained with respect to small perturbations to the network. Taken together, the CPC‐induced pluripotent stem cell network is extremely robustly designed for their functions.Inspec keywords: cellular biophysics, Boolean functions, perturbation theory, molecular biophysics, cardiologyOther keywords: cardiac progenitor cell induced pluripotent stem cell network, cell phenotypes transition, biological systems, living systems, internal perturbations, external perturbations, unpredictable environments, stochastic events, unreliable components, long‐term challenge, systems biology, molecular regulator network, Boolean model, global dynamic properties, directed differentiation process, CPC‐induced pluripotent stem cell network  相似文献   

17.
The knowledge of how cells respond to different treatments in terms of their migration potential could improve bone regeneration and osseointegration of dental implants. The objective of this study was to elucidate the effects of various chemoattractants, bone morphogenetic protein-2 (BMP-2), low-level laser therapy (LLLT), and cone beam computed tomography (CBCT) on the migration of dental follicle stem cells (DFSCs). The chemoattractants used in our study were the serum-free (SF) conditioned media that were harvested from osteoblast cell cultures seeded on the surface of titanium implants—Ti6Al7Nb (TiCtrl), implants infiltrated with hydroxyapatite (TiHA), with silicatitanate (TiSiO2), and from culture of DFSCs cultivated on TiCtrl implants. We used the scratch migration assay to evaluate the influence of BMP-2, LLLT therapy, and CBCT on the migration potential of DFSCs. The migration scratch assay indicates that the BMP-2 growth factor is able to increase the DFSC migration compared to control culturing medium and regardless of laser or CBCT exposure. The results demonstrate the importance of improving the implant surface with HA, SiO2, and DFSCs. Stimulated DFSCs will secrete growth factors which will act as chemoattractants for the stem cells of the implant host. Adding growth factors such as BMP-2 can improve the migration process of DFSCs.  相似文献   

18.
分离纯化造血干祖细胞具有十分重要的理论和应用价值。本文利用吸附免疫微球的单克隆抗体分离系统,对不同来源造血组织的CD34+细胞进行纯化分离,经流式细胞仪检测,其纯度可达95—99%。在外源性生长因子的刺激下,CD34+细胞可形成大量各系造血集落,而CD34-组分则几乎不含造血集落形成细胞。进一步的研究则是利用免疫荧光激活的流式细胞分选系统,将CD34+细胞群分为CD34+CD38+和CD34+CD38-两个亚群,并比较正常人骨髓、脐带血、外周血来源的亚群细胞造血性能。结果表明,不同细胞亚群造血性能不均一,同一亚群不同来源的细胞也同样具有不均一性,从而为造血干细胞的基因治疗、建库、移植等提供了理论依据。  相似文献   

19.
Ever‐growing tissue regeneration and other stem cell therapies cause pressing need for large population of self‐renewable stem cells. However, stem cells gradually lose their stemness after long‐term in vitro cultivation. In this study, a ZnO nanorod (ZnO NR) array is used to maintain the stemness of human adipose‐derived stem cells (hADSCs). The results prove that after culturing hADSCs on ZnO NRs for 3 weeks, the stemness genes and protein expression level are higher than that on culture plates and ZnO film. ZnO NRs can maintain stemness of hADSCs without inhibiting the cell proliferation and oriented differentiation capabilities. KLF4 (Kruppel‐like factor 4) is a Zn2+‐binding gene that plays a vital role in cell proliferation and differentiation. Sustained Zn2+ release and the increased expression of KLF4 can be detected, suggesting that ZnO NRs have efficiently released Zn2+ for stemness maintenance. Taken together, the nanotopography of ZnO NRs and the Zn2+ release synergistically facilitate stemness maintenance. This study has provided a powerful tool for directing cell fate, maintaining stemness, and realizing the expansion of stem cells in vitro, which will open a new route for the manufacture of large populations of stem cells and fulfilling the growing demand for the cell therapy market.  相似文献   

20.
The objectives of this study were to: (1) develop an injectable and biodegradable scaffold based on oxidized alginate microbeads encapsulating periodontal ligament (PDLSCs) and gingival mesenchymal stem cells (GMSCs); and (2) investigate the stem cell viability, and osteogenic differentiation of the stem cells in vitro. Stem cells were encapsulated using alginate hydrogel. The stem cell viability, proliferation and differentiation to adipogenic and osteogenic tissues were studied. To investigate the expression of both adipogenesis and ontogenesis related genes, the RNA was extracted and RT-PCR was performed. The degradation behavior of hydrogel based on oxidized sodium alginate with different degrees of oxidation was studied in PBS at 37?°C as a function of time by monitoring the changes in weight loss. The swelling kinetics of alginate hydrogel was also investigated. The results showed that alginate is a promising candidate as a non-toxic scaffold for PDLSCs and GMSCs. It also has the ability to direct the differentiation of these stem cells to osteogenic and adipogenic tissues as compared to the control group in vitro. The encapsulated stem cells remained viable in vitro and both osteo-differentiated and adipo-differentiated after 4?weeks of culturing in the induction media. It was found that the degradation profile and swelling kinetics of alginate hydrogel strongly depends on the degree of oxidation showing its tunable chemistry and degradation rate. These findings demonstrate for the first time that immobilization of PDLSCs and GMSCs in the alginate microspheres provides a promising strategy for bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号