首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural, electrical, dielectric, magnetic and magnetoelectric properties of (x)Ni0.8Zn0.2Fe2O4 + (1 − x)Pb0.93La0.07(Zr0.60Ti0.40)O3 (x = 0, 0.15, 0.30, 0.45 and 1) have been studied by means of various experimental techniques. Polycrystalline samples of this series have been prepared by the double sintering ceramic method. X-ray diffraction data analysis revealed purity of the composites. Microstructural analysis using scanning electron microscopy mode depicts the presence of two phases in contact with each other. Dielectric properties were studied at and well above room temperature. Temperature dependent variation of the dielectric constant show diffused phase transition which can be well described by fitting the Lorentz-type relation, . Observation of well-saturated ferroelectric hysteresis loop and magnetic hysteresis loop for composites indicates that ferroelectric and magnetic ordering exist simultaneously at room temperature. The static value of magneto electric voltage coefficient (αE) has been studied as a function of magnetic field at room temperature for all the composites. The maximum value of αE is 7.53 mV/(cm Oe) for 85% PLZT-15% NZFO composites.  相似文献   

2.
CaRuO3-CaTiO3 ceramic composites were prepared by sintering for short times for potential applications in the areas of electronic ceramics. Scanning electron microscopy and energy dispersive X-ray analysis showed two separate phases, CaRuO3 and CaTiO3 in the composite. Conductivity data, measured by the four-probe method, showed that the composites have high electrical conductivity when x ≥ 0.19 in xCaRuO3-(1 − x)CaTiO3 composites. Furthermore, the nanoparticle of calcium ruthenate prepared by reverse micelle synthesis was used to be conductive agent for the composite. The result shows that the use of nano-sized calcium ruthenate enabled higher electrical conductivity to be maintained down to x = 0.09.  相似文献   

3.
Ba0.7Sr0.3(Ti1  xZrx)O3 (x = 0, 0.1, 0.2) (BSZT) thin films have been prepared on copper foils using sol-gel method. The films were annealed in an atmosphere with low oxygen pressure so that the substrate oxidation was avoided and the formation of the perovskite phase was allowed. The X-ray diffraction results show a stable polycrystalline perovskite phase, with the diffraction peaks of the BSZT films shifting toward the smaller 2θ with increasing Zr content. Scanning electron microscopy images show that the grain size of the BSZT thin films decreases with increasing Zr content. High resolution transmission electron microscopy shows the clear lattice and domain structure in the film. The dielectric peaks of the BSZT thin films broaden with increasing Zr content. Leakage current density of Ba0.7Sr0.3(Ti1  xZrx)O3 (x = 0.1) thin film is the lowest over the whole applied voltage.  相似文献   

4.
BaTiO3/polyaniline and BaFe12O19/polyaniline composites were synthesized by in situ polymerization and introduced into epoxy resin and polyethylene to be microwave and infrared absorber. The spectroscopic characterizations of the formation processes of BaTiO3/polyaniline and BaFe12O19/polyaniline composites were examined using Fourier transform infrared, ultraviolet–visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. Microwave absorbing properties were investigated by measuring reflection loss in the 2–18 and 18–40 GHz microwave frequency range using the free space method. The thermal extinction measurements in the 3–5 and 8–12 μm were done to evaluate the shielding affectivity of infrared. The results showed that the BaTiO3/polyaniline and BaFe12O19/polyaniline composites have good compatible dielectric and magnetic properties and hence the microwave absorbency show broad frequencies absorbing properties. Moreover, the infrared thermal image testing that the detecting ability of infrared thermal imaging was decreased when the BaFe12O19 and BaTiO3 was coating with polyaniline.  相似文献   

5.
Thin films of Bim + 1Fem − 3Ti3O3m + 3 (BFTO) with m ≦ 9 have been successfully grown on (100) SrTiO3 by chemical solution deposition. These films had the c axis normal to the film plane. The conversion electron Mössbauer spectoroscopy (CEMS) showed that the spectra of BFTO thin films exhibit an asymmetric quadrupole doublet for m = 8 at 300 K, indicative of being paramagnetic, while, for m = 9, clearly show six hyperfine lines indicating presence of magnetic order at 300 K. From the intensity ratio of asymmetric peaks, the polarization axis of BFTO films with m ≥ 8 was deduced to be likely along <101> of the perovskite-like unit. On the other hand, it was found from the spectral fitting that the BFTO thin film with m = 9 has the Néel temperature around 310 K and the spin axis making an angle of about 60° to the c-axis. These indicate that the BFTO (m = 9) thin film is a promising candidate for room-temperature multiferroics.  相似文献   

6.
High quality Tl2Ba2CaCu2O8 (Tl-2212) superconducting thin films are prepared on both sides of 2 in. LaAlO3(0 0 1) substrates by off-axis magnetron sputtering and post-annealing process. XRD measurements show that these films possess pure Tl-2212 phase with C-axis perpendicular to the substrate surface. The thickness unhomogeneity of the whole film on the 2 in. wafer is less than 5%. The superconducting transition temperatures Tcs of the films are around 105 K. At zero applied magnetic field, the critical current densities Jcs of the films on both sides of the wafer were measured to be above 2 × 106 A/cm2 at 77 K. The microwave surface resistance Rs of film was as low as 350 μΩ at 10 GHz and 77 K. In order to test the suitability of Tl-2212 thin films for passive microwave devices, 3-pole bandpass filters have been fabricated from double-sided Tl-2212 films on LaAlO3 substrates.  相似文献   

7.
Electrical and magnetoelectric properties of magnetoelectric (ME) composites containing barium titanate as electrical component and a mixed Ni-Co-Mn ferrite as the magnetic component are reported. The ME composites with a general formula (x)BaTiO3 + (1 − x)Ni0.94Co0.01Mn0.05Fe2O4 where x varies as 0, 0.55, 0.70, 0.85 and 1 were prepared by standard double sintering ceramic method. The presence of both the phases was confirmed by X-ray diffraction technique. The dc resistivity was measured as a function of temperature. The variation of dielectric constant (?) and loss tangent (tan δ) with frequency (100 Hz-1 MHz) and with temperature was studied. The conduction is explained on the basis of small polaron model based on ac conductivity measurements. The static value of ME conversion factor i.e. dc (ME)H was studied as function of intensity of magnetic field. The changes were observed in dielectric properties as well as ME effect as the molar ratio of the components was varied. A maximum value of ME conversion factor of 610 μV/cm Oe was observed in the case of a composite containing 15 mol% ferrite phase.  相似文献   

8.
4ZnO·B2O3·H2O is commonly used as a flame-retardant filler in composite materials. The microstructure of the powder is of importance in its applications. In our study, for the first time, one-dimensional (1D) nanostructure of 4ZnO·B2O3·H2O with rectangle rod-like shape has been synthesized by a hydrothermal route in the presence of surfactant polyethylene glycol-300 (PEG-300). The nanorods have been characterized by X-ray powder diffraction (XRD), inductively coupled plasma with atomic emission spectroscopy (ICP-AES), thermogravimetry (TG) and differential thermal analysis (DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with selected area electron diffraction (SAED) as well as high-resolution transmission electron microscopy (HRTEM). These nanorods are about 70 nm in thickness, 150-800 nm in width and have lengths up to a few microns. 4ZnO·B2O3·H2O nanorods crystallize in the monoclinic space group P21/m, a = 6.8871(19) Å, b = 4.9318(10) Å, c = 5.7137(16) Å, β = 98.81(21)° and V = 191.779(71) Å3.  相似文献   

9.
This work reports on the synthesis and the structural and optical characterization of beta barium borate (β-BBO) thin films containing 4, 8 and 16 mol% of titanium oxide (TiO2) deposited on fused silica and silicon (0 0 1) substrates using the polymeric precursor method. The thin films were characterized by X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy techniques. The optical transmission spectra of the thin films were measured over a wavelength range of 800-200 nm. A decrease was observed in the band gap energy as the TiO2 content was raised to 16 mol%. Only the β-BBO phase with a preferential orientation in the (0 0 l) direction was obtained in the sample containing 4 mol% of TiO2 and crystallized at 650 °C for 2 h.  相似文献   

10.
Glasses with the compositions (100 − x)(0.16Na2O/0.10MnO/0.74SiO2)/xFe2O3, (x = 5-30) and 16Na2O/10MnO/(74 − y)SiO2/yFe2O3 (y = 5-30) were studied using X-ray diffraction and scanning electron microscopy. The effect of the chemical composition and the thermal history on the phase formation and the resulting microstructure was investigated. During cooling, the precipitation of ferrimagnetic solid solutions Fe3O4/Mn3O4 was observed. These crystals show dendritic or platelet shape, whereby the platelets are ferromagnetic and the dendrites - mainly paramagnetic. The tendency towards crystallization can be suppressed by increasing the Na2O-concentration. In contrast to glasses without manganese oxide, the precipitation of hematite is not observed. Therefore, the addition of reducing agents is not required, in order to crystallize large volume concentrations of the ferrimagnetic phase.  相似文献   

11.
The effects of neodymium (Nd) addition on the phase evolution, structural and superconducting properties of (Bi,Pb)2Sr2CaCu2Oy [(Bi,Pb)-2212] prepared by solid state synthesis in bulk polycrystalline form were studied. The Nd content was varied from x = 0 to 0.5 on a general stoichiometry of Bi1.7Pb0.4Sr2.0Ca1.1Cu2.1NdxOy. The samples were characterized by differential thermal analysis (DTA), powder X-ray diffraction, scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX), resistance-temperature (R-T) measurements and superconductivity measurements at 64 K. It was found that the melting temperature of (Bi,Pb)-2212 slightly increases and the endotherm broadens due to the Nd-addition. The c-lattice parameter initially decreases and then increases with Nd addition. The critical temperature (TC) and the critical current density (JC) of the added samples are highly enhanced. The added sample shows a maximum onset critical temperature (TC-onset) of 95.56 K (x = 0.3) and a maximum critical current density of 719 A/cm2 at 64 K (x = 0.2) against 76.7 K and 100 A/cm2, respectively, for the pure sample. The results show that the enhancement in superconducting properties are not due to any improvement in microstructure or grain growth, but due to a decrease in hole concentration as a result of Nd doping, which changes the system from ‘over-doped condition’ to ‘optimally doped condition’.  相似文献   

12.
Ki-Seok An 《Vacuum》2003,72(2):177-181
A Pt3Co(1 1 0)c(2×4)-O surface has been investigated by scanning tunneling microscopy (STM), low-energy electron diffraction, and Auger electron spectroscopy. At a very initial oxidation stage exposed at 500°C, creation of missing and/or added row structures running to the [0 0 1] direction on clean Pt3Co(1 1 0)2×1 surface was imaged from the steps. The surface is fully covered by a well-ordered c(2×4) structure at 2 L oxygen exposure. Atomic-resolution STM image shows the added row-type anti-phase Co-O zigzag chains along the [0 0 1] direction. Based on the images, the structure model for the c(2×4) surface was suggested as a first oxidized layer, which comes from the chemical reaction forming stoichiometric Co monoxide. Further oxygen exposure above 5 L, Co-O clusters imaged to large dots were formed on the surface with the size of about 5-7 Å.  相似文献   

13.
(VO)0.09V0.18Mo0.82O3 · 0.54H2O microrods have been synthesized for the first time via a hydrothermal treatment of aqueous peroxomolybdic acid and vanadyl sulfate. The compound crystallizes in hexagonal rods with space group P63, and lattice constants a = 10.586 Å, and c = 3.698 Å. The single crystalline rods exhibit diameters of 1-2 μm and lengths up to 45 μm. A variety of techniques, including X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscope, Fourier-transform infrared spectroscopy, differential scanning calorimetry and static magnetometry were used to characterize the product.  相似文献   

14.
Manoj Kumar 《Materials Letters》2007,61(10):2089-2092
xCuFe2O4-(1 − x)BiFeO3 spinel-perovskite nanocomposites with x = 0.1, 0.2, 0.3 and 0.4 were prepared using citrate precursor method. X-ray diffraction (XRD) analysis showed phase formation of xCuFe2O4-(1 − x)BiFeO3 calcined at 500 °C. Transmission electron microscopy (TEM) shows formation of nanocrystallites of xCuFe2O4-(1 − x)BiFeO3 with an average particle size of 40 nm. Variation of dielectric constant and dielectric loss with frequency showed dispersion in the low frequency range. Coercivity, saturation magnetization and squareness have been found to vary with concentration of ferrite phase and annealing temperature due to the increase in crystallite size. Squareness and coercivity increased with an increase in annealing temperature up to 500 °C and then decreased with a further increase in temperature to 600 °C. Magnetoelectric effect of the nanocomposites was found to be strongly depending on the magnetic bias and magnetic field frequency.  相似文献   

15.
Imre Kovács  János Kiss 《Vacuum》2007,82(2):182-185
The formation of PdZnx alloy on Pd(1 0 0) and its characteristics were investigated by various methods, such as photoelectron, auger-electron, electron energy loss, thermal desorption spectroscopic methods and work-function measurement. The alloy was produced by the decomposition of diethyl zinc on Pd(1 0 0). The alloy surface reacts with O2 and ZnOx is formed. The reactivity of alloy to hydrogen is similar to that of K/Pd. The stability of adsorbed CO is lower than on clean Pd(1 0 0).  相似文献   

16.
Thin films of Bi3.15Nd0.85Ti3O12 (BNT) and Bi3.15Nd0.85Ti3 − xZrxO12 (BNTZx, x = 0.1 and 0.2) were fabricated on Pt/TiO2/SiO2/Si(100) substrates by a chemical solution deposition (CSD) technique at 700 °C. Structures, surface morphologies, leakage current characteristics and Curie temperature of the films were studied as a function of Zr ion content by X-ray diffraction, atomic force microscopy, ferroelectric test system and thermal analysis, respectively. Experimental results indicate that Zr ion substitution in the BNT film markedly decreases the leakage current of the film, while almost not changing the Curie temperature of the film, which is at about 420-460 °C. The decrease of the leakage current in BNTZx films is that the conduction by the electron hopping between Ti4+ and Ti3+ ions is depressed because Zr4+ ions can block the path between two adjacent Ti ions and enlarge hopping distance.  相似文献   

17.
Single phase nano-crystalline lithium cadmium ferrite Li0.35Cd0.3Fe2.35O4 is synthesized by a modified citrate gel precursor technique in different pH media. The modified citrate precursor technique reduces the formation of the impurity phase α-Fe2O3 in the inverse spinel phase of lithium ferrite. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the average crystallite size. As-prepared sample shows the paramagnetic behaviour of MH curve measured by vibrating sample magnetometer (VSM). The coercivity (Hc) and magnetization (M) both increase with decrease in temperature from 300 K to 80 K. Temperature dependent magnetic properties below the Curie point are defined by the Bloch's law and Neel relaxation relations. The effect of annealing on magnetic properties at different temperature is studied.  相似文献   

18.
In this paper, we present a simple microwave-assisted synthesis of Zn1  xCoxO nanopowders. With the advantages of the microwave-assisted method, we have successfully synthesized good crystalline quality and good surface morphology Zn1  xCoxO nanopowders. The nanopowders are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-VIS absorption, and micro-Raman spectroscopy. We found, in the synthesis process, the surfactant Triethanolamine (TEA) plays an important role on the morphology of Zn1  xCoxO nanoparticles. The XRD study shows that for Co doping up to 5%, Co2+ ions are successfully incorporated into the ZnO host matrix. The absorption spectra of Zn1  xCoxO (x = 1-5%) nanopowders show several peaks at 660, 611 and 565 nm, indicating the presence of Co2+ ions in the tetrahedral sites. The Raman study shows that the linewidth of E2low mode increases with Co concentration, which further indicates the incorporation of Co2+ ions into the ZnO host matrix.  相似文献   

19.
Using zinc naphthenate and titanium tetra isopropoxide (1:1 mol.%) dissolved in ethanol as precursors, single phase Zn2TiO4 nanoparticles were synthesized by the flame spray pyrolysis technique. The Zn2TiO4 nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The BET surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption. The average diameter of Zn2TiO4 spherical particles was in the range of 5 to 10 nm under 5/5 (precursor/oxygen) flame conditions. All peaks can be confirmed to correspond to the cubic structure of Zn2TiO4 (JCPDS No. 25-1164). The SEM result showed the presence of agglomerated nanospheres with an average diameter of 10-20 nm. The crystallite sizes of spherical particles were found to be in the range of 5-18 nm from the TEM image. An average BET equivalent particle diameter (dBET) was calculated using the density of Zn2TiO4.  相似文献   

20.
Ceramic samples of La0.1Sr0.9−xDyxTiO3 (x = 0.01, 0.03, 0.07, 0.10) have been prepared by the solid-state reaction method. Characterization from the powder X-ray diffraction indicates that their crystal structure changes from cubic to tetragonal phase. Their electrical and thermal transport properties are measured in the temperature range of 300-1100 K. n-Type thermoelectric is obtained with large Seebeck coefficient. The figure of merit is markedly improved, due to relatively lower electrical resistivity and thermal conductivity by Dy doping effect. A much lower electrical resistivity of 0.8 mΩ cm at room temperature is obtained in La0.1Sr0.8Dy0.1TiO3, and with a relatively lower thermal conductivity of 2.5 W/m K at 1075 K. The maximum figure of merit reaches ∼0.36 at 1045 K for La0.1Sr0.83Dy0.07TiO3, which is the largest value among n-type oxide thermoelectric ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号