首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
通过原位乳液插层法制备高有机蒙脱土(OMMT)含量的聚丙烯酸丁酯/有机蒙脱土(PBA/0MMT)纳米复合物,将其作为母料与ABS进一步熔融插层制得力学性能良好的ABS/OMMT纳米复合材料,并通过XRD、TGA和TEM等对材料进行了表征.结果表明:制得的PBA/OMMT母料为插层型纳米复合物,OMMT片层间距从2.38nm增大到3.85nm;采用母料法制备ABS/OMMT纳米复合材料,ABS链段易插层进入OMMT层间,使OMMT片层在ABS基体中达到剥离并以纳米尺度均匀分散,较好地保持了ABS的缺口冲击强度.  相似文献   

2.
采用复合插层剂十八烷基胺(ODA)和氨基十一烷酸(AUA)处理蒙脱土(MM T)。通过离子交换反应,复合插层剂进入了蒙脱土片层间,使蒙脱土片层间距增大。把该有机改性蒙脱土(MM T-ODA AUA)与EVA熔融共混,EVA分子链进入MM T-ODA AUA片层间使其间距进一步增大。EVA/MM T-ODA AUA纳米复合材料中的MM T片层与基体EVA之间的界面相互作用强,其复合材料的拉伸强度和撕裂强度比EVA有较大提高。由于纳米硅酸盐片层的阻隔作用,EVA/MM T-ODA AUA纳米复合材料的吸水率比EVA低。  相似文献   

3.
采用溶液插层法制备了顺丁橡胶/有机蒙脱土(BR/OMMT)纳米复合材料,并对复合材料的微观结构和性能进行了研究.结果显示,BR大分子链插入到OMMT片层中,OMMT在橡胶中为纳米级分散;BR/OMMT纳米复合材料的力学性能和耐热性能较纯BR有很大的提高,BR/OMMT纳米复合材料具有优异的物理性能;OMMT对复合材料的门尼黏度影响很小,BR/OMMT复合材料的吃粉速度快,加工性能优异.  相似文献   

4.
付丽华  贾德民  刘卅 《功能材料》2005,36(10):1638-1644
首次将插层纳米复合技术与互穿聚合物网络(IPN)技术相结合,通过同步插层聚合法制备了聚氨酯/聚甲基丙烯酸甲酯/有机蒙脱土(PU/PMMA/OMMT)纳米复合材料.XRD、SEM、TGA等研究表明,在聚氨酯/有机蒙脱土(PU/OMMT)体系中蒙脱土以40~700 nm的团聚体不均匀地分散在聚氨酯基体中,且部分蒙脱土被插层,其层间距增加了0.95nm,体系为插层型纳米复合材料.PU/PMMA/OMMT体系中蒙脱土以20~80nm的粒子分布于聚合物基体中,且蒙脱土的插层效果显著,是PU/OMMT体系的2.5倍,形成了插层型纳米复合材料.同时,蒙脱土的加入使得聚氨酯和聚甲基丙烯酸甲酯的互穿聚合物网络(PU/PMMA-IPN)体系中PU相与PMMA相间相分离更明显,塑性相畴粒子尺寸显著增加,且各相中两组分相互作用加强,分布更均匀.PU/PMMA/OMMT纳米复合材料的热稳定性高于其他材料.同时对其力学性能进行了研究,发现其力学性能明显优于聚氨酯、基于聚氨酯和PU/PMMA-IPN和PU/OMMT纳米复合材料.  相似文献   

5.
聚丙烯/尼龙6/纳米蒙脱石复合材料的制备及热性能研究   总被引:1,自引:0,他引:1  
采用熔融插层法成功制备了聚丙烯(PP)/尼龙6(PA6)/有机化蒙脱石(OMMT)纳米复合材料.用X-衍射分析(XRD)和透射电镜(TEM)观察OMMT层间距的变化和材料的结构,用示差扫描量热法(DSC)和热重分析(TG)研究了其热性能,并考察了纳米复合材料的拉伸强度.研究结果表明,OMMT的层间距由2.200nm扩大到2.800nm,PP/PA6合金高分子链取代了有机化蒙脱石层间的十六烷基三甲基溴化铵而进入到蒙脱石的片层间,加入质量分数为4%的OMMT的复合材料不仅使材料的拉伸强度提高了约15%,还提高了材料的热稳定性,使剩炭率增加了8.1%.  相似文献   

6.
以阳离子表面活性剂—十一氨基十一酸对钠基蒙脱土(Na-MMT)进行了改性。对制得的阳离子有机蒙脱土(OMMT)进行了红外光谱(IR)、XRD分析以及粒径分布测试,分析结果表明,阳离子表面活性剂已进入蒙脱土的片层间,将蒙脱土片层间距撑大,并且OMMT由亲水性变为了亲油性,这为聚合物/层状硅酸盐纳米复合材料和防沉剂的开发提供了一个新的方向。  相似文献   

7.
选用湿态纳米羟基磷灰石(HA)与脂肪族聚氨酯(PU)为原料,采用溶液共混法和溶剂挥发法制备了亲水性羟基磷灰石/聚氨酯(HA/PU)纳米复合材料,并采用SEM、吸水实验和力学实验等方法对该复合材料的形貌和性能进行了研究。结果表明磷灰石晶体以纳米状态均匀地分布在PU基质中,过高含量的纳米HA易使纳米粒子团聚,不利于其在PU基体中的均匀分散;在制备PU的多元醇原料中引入亲水性较强的聚乙二醇,可提高PU表面和整体的亲水性;随着硬段含量的增加,复合材料的拉伸强度和弹性模量呈上升趋势,断裂伸长率下降;随着软段中聚乙二醇含量的升高,弹性模量大幅下降,拉伸强度和断裂伸长率先升高后下降;纳米HA的添加可同时提高复合材料的拉伸强度和断裂伸长率,当纳米HA的质量分数为30%时,复合材料的综合力学性能达到最佳。  相似文献   

8.
纳米OMMT/EVA-g-PU复合材料   总被引:1,自引:1,他引:0  
采用熔融接枝与熔融插层相结合的方法,成功制备了纳米OMMT/EVA-g-PU复合材料。通过FTIR及13C NMR测试表明,端—NCO的聚氨酯(PU)预聚体与皂化乙烯-醋酸乙烯酯共聚物(EVA)间发生接枝反应。采用X射线衍射仪(XRD)与透射电镜(TEM)观察了蒙脱土(OMMT)在基体中的分散状态,用电子万能试验机、动态力学分析仪(DMA)和热重分析仪(TG)分析了复合材料的力学性能、储能模量和热性能。结果表明:OMMT主要以插层型分布在基体中;当OMMT的质量分数为3%时,复合材料的断裂强度、杨氏模量和撕裂强度分别为7.96 MPa、7.12 MPa和49.97 MPa;复合材料的储能模量随 OMMT含量的增加而升高,当OMMT的质量分数为7%时,复合材料的储能模量相对于纯EVA 提高了2 倍多;复合材料的热稳定性能也要优于纯EVA,并随OMMT含量的增加而升高。  相似文献   

9.
将一种高效膨胀型无卤阻燃剂季戊四醇二磷酸酯双磷酰蜜胺(SPBDM)和有机改性蒙脱土(OMMT)添加到高分子量聚乳酸(PLA)中,熔融共混制备纳米膨胀型阻燃聚乳酸复合材料(SPBDM-OMMT/PLA)。采用XRD、TEM研究了纳米粒子的形态分布,并用热重分析法(TGA)、氧指数测试(LOI)、垂直燃烧测试(UL-94)探讨了该纳米阻燃SPBDM-OMMT/PLA复合材料的热性能和阻燃性能。研究表明,OMMT在PLA基体中有较好的分散性,高分子链插入层状硅酸盐片层间,形成了剥离型或插层型复合材料;相比纯PLA,加入SPBDM后改善了OMMT/PLA的高温热稳定性,最大热分解温度均向高温移动,且高温残炭质量分数大幅度提高;当SPBDM和OMMT质量分数分别为10.0%和1.0%时,纳米阻燃SPBDM-OMMT/PLA复合材料能达到较好的阻燃效果,LOI数值高达32%,相应垂直燃烧等级达UL-94V-0级。  相似文献   

10.
采用原位聚合法制备了聚氨酯(PU)/ZnO纳米复合材料。DSC和FT-IR测试结果表明,PU/ZnO纳米复合材料中的氨酯羰基氢键化程度和硬段的有序化程度较纯PU低,而且PU/ZnO纳米复合材料中PU软硬段间有更好的相混合程度;TEM照片显示,ZnO以纳米尺寸较均匀地分散在PU体系中,且纳米ZnO粒子与PU基体有较强的界面作用;力学性能测试结果表明,少量纳米ZnO粒子的加入,对PU有很好的增强和增韧效果。  相似文献   

11.
本文采用预聚法制备了聚酯类聚氨酯/13X分子筛复合材料,考察了分子筛含量和交联系数对聚氨酯弹性体力学性能、耐溶剂性能的影响。结果表明,13X分子筛的加入量为7%,交联系数为0.90时,聚氨酯弹性体的耐撕裂强度从73.1 kN/m提高到94.2 kN/m,拉伸强度从44.5 M Pa提高到49.9 M Pa,断裂伸长率从580%提高到640%,溶胀度从103.78%降低到72.58%。由DSC和DM A分析可知PU/13X复合材料具有更好的微相分离及动态力学性能。  相似文献   

12.
制备了一系列不同量的剥离型有机蒙脱土(OMMT)与氢化丁腈橡胶(HNBR)复合的纳米材料,探究了OMMT的含量对HNBR复合材料力学、热力学性能的影响。采用广角X射线衍射(XRD)、差示扫描量热分析(DSC)、热重分析、傅里叶变换红外光谱、透射电镜对OMMT的结构与性能进行了表征。并对HNBR/OMMT复合材料的结构与性能进行了分析。XRD结果表明OMMT是完全剥离且由聚氨酯大分子链包覆的纳米片层粒子;DSC结果证明OMMT中的活性双键能发生反应。加入单片层OMMT后,HNBR纳米复合材料的力学性能、热力学性能以及动态性能都有所提高。且3phr的OMMT能使复合材料的耐磨性提高了24.7%,硬度、拉伸强度、撕裂强度等达到最大值。  相似文献   

13.
以聚酯多元醇(PEA)、2,4-甲苯二异氰酸酯(TDI-100)为原料,采用预聚法制备预聚体,将预聚体分成两部分分别以不同的扩链系数与扩链剂3,5-二甲硫基甲苯二胺(E-300)混合反应,再将两种配料不同的预反应物混合后浇铸成型,即为多交联体系聚氨酯材料。利用差示扫描量热(DSC)、耐溶剂性和力学测试考察其性能并与均一体系聚氨酯(PU)材料的性能进行比较。力学性能测试表明,多交联体系聚氨酯材料的耐撕裂性能明显提高,拉伸性能略微降低;多交联体系聚氨酯材料的耐溶剂性能也明显提高;DSC测定结果表明,多交联体系材料的微相分离更好。  相似文献   

14.
The novel polyurethane/montmorillonite (PU/MMT) nanocomposites based on poly (propylene oxide) glycol (POP), 4,4′-diphenymethylate diisocyanate (MDI), 1,4-butanediol (1,4-BD) and MMT has been synthesized using a one-step direct polymerization-intercalation technique by twin-screw extruder. Its structure and thermal properties are characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and High-resolution electron microscopy (HREM), Fourier-transform infrared spectroscopy (FTIR) and Thermogravimetry analysis (TGA), respectively. The results of XRD and HREM analyses show that the silicate layer is well dispersed in PU matrix and this mesostructure can be considered as a delaminated nanocomposites. The TGA analysis indicates that the thermal stability properties of the PU/MMT nanocomposites are increased slightly compared with the pristine PU, due to the increase of the char residue. The mechanical and flammability performances are examined by electronic Universal Tester and Cone calorimetry, respectively. The layered silicate, which acts as a high aspect ratio reinforcement, enhances tensile strength of the PU. Specifically, there is a 25% increase in the tensile strength of PU nanocomposites containing 4 wt.% MMT compared with that of pristine PU. However, the elongation at break of PU/MMT nanocomposites is lower than that of pristine PU. The loading of MMT leads to the remarkably decrease of heat release rate (HRR), contributing to the improvement of flammability performance.  相似文献   

15.
Polymer nanocomposites based on thermoplastic polyurethane (PU) elastomer and metal nanoparticle (Ag and Cu) decorated multiwall carbon nanotubes (M-CNTs) were prepared through melt mixing process and investigated for its mechanical, dynamic mechanical and electro active shape memory properties. Structural characterization and morphological characterization of the PU nanocomposites were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Morphological characterization revealed better dispersion of M-CNTs in the polyurethane, which is attributed to the improved interaction between the M-CNTs and polyurethane. Loading of the metal nanoparticle coated carbon nanotubes resulted in the significant improvement on the mechanical properties such as tensile strength of the PU composites in comparison to the pristine carbon nanotubes (P-CNTs). Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the polyurethane increases slightly with increasing loading of both pristine and metal nanoparticle functionalized carbon nanotubes. The metal nanoparticles decorated carbon nanotubes also showed significant improvement in the thermal and electrical conductivity of the PU/M-CNTs nanocomposites. Shape memory studies of the PU/M-CNTs nanocomposites exhibit remarkable recoverability of its shape at lower applied dc voltages.  相似文献   

16.
利用二苯基甲烷二异氰酸酯(MDI)、聚醚多元醇及小分子扩链剂、交联扩链剂合成了一系列适用于快速硅胶模具浇注成形的二组分聚氨酯(PU)树脂.通过粘度测试考察了PU树脂的浇注性能,使用示差扫描量热分析(DSC)和热重分析(TGA)分析了树脂的热性能,并对其相关的力学性能进行了分析测试.结果表明,PU树脂两组分及其混合液的粘度较小,釜内寿命适中,浇注性能优良;通过调节硬段含量及混和扩链交联剂中三羟甲基丙烷(TMP)含量,使得PU树脂具有较高的力学性能和热性能,浇注成形件可在高负荷、高温下的使用.  相似文献   

17.
自制一种有机改性蒙脱土(OMMT),采用双辊共混法与三元乙丙橡胶复合,得到了具有高强度、低硬度等超常力学性能的乙丙橡胶/有机蒙脱土纳米复合材料。透射电镜观察表明,制备出了半剥离型纳米复合材料,力学性能测试显示,在低填充量(15份以下)时,纳米复合材料的各项力学性能远超过同含量下高耐磨碳黑体系的。在填充量为10份时,有机土填充体系的断裂强度为15.85 MPa,是碳黑填充体系(6.57 MPa)的2.4倍,是纯橡胶体系(2.05 MPa)的7倍多;撕裂强度也高于碳黑体系和纯胶体系的;而此时纳米复合材料的邵A硬度仅为58.5,比相同强度下碳黑补强体系的低近10。  相似文献   

18.
借助锥体磨的研磨剪切外力,将聚醚多元醇插层进入蒙脱土片层中,使其片层间距扩大并发生部分剥离,从而利用本体插层聚合法制备了综合性能优异的聚氨酯/蒙脱土纳米复合弹性体材料。当有机蒙脱土添加量仅为1%时,其拉伸强度比纯聚氨酯弹性体高30%.达到30.2MPa,断裂伸长率也略有增加。TGA及吸水实验分析表明聚氨酯/蒙脱土纳米复合材料有更高的热失重温度和更低的吸水率.研究了蒙脱土含量对聚氨酯/蒙脱土纳米复合材料各项性能的影响。  相似文献   

19.
Polyurethane (PU) nanocomposite films containing highly-aligned graphene sheets are produced. Aqueous dispersion of ultralarge-size graphene oxide (GO) is in situ reduced in waterborne polyurethane, resulting in fine dispersion and high degree of orientation of graphene sheets, especially at high graphene contents. The PU/reduced GO nanocomposites present remarkable 21- and 9-fold increases in tensile modulus and strength, respectively, with 3 wt.% graphene content. The agreement between the experiments and theoretical predictions for tensile modulus proves that the graphene sheets are indeed dispersed individually on the molecular scale and oriented in the polymer matrix to form a layered structure. The moisture permeability of the nanocomposites presents a systematic decrease with increasing graphene content, clearly indicating the impermeable graphene sheets acting as moisture barrier. The synergy arising from the very high aspect ratio and horizontal alignment of the graphene sheets is responsible for this finding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号