首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Evaluation of rear-end crash risk at work zone using work zone traffic data   总被引:1,自引:0,他引:1  
This paper aims to evaluate the rear-end crash risk at work zone activity area and merging area, as well as analyze the impacts of contributing factors by using work zone traffic data. Here, the rear-end crash risk is referred to as the probability that a vehicle is involved in a rear-end crash accident. The deceleration rate to avoid the crash (DRAC) is used in measuring rear-end crash risk. Based on work zone traffic data in Singapore, three rear-end crash risk models are developed to examine the relationship between rear-end crash risk at activity area and its contributing factors. The fourth rear-end crash risk model is developed to examine the effects of merging behavior on crash risk at merging area. The ANOVA results show that the rear-end crash risk at work zone activity area is statistically different from lane positions. Model results indicate that rear-end crash risk at work zone activity area increases with heavy vehicle percentage and lane traffic flow rate. An interesting finding is that the lane closer to work zone is strongly associated with higher rear-end crash risk. A truck has much higher probability involving in a rear-end accident than a car. Further, the expressway work zone activity area is found to have much larger crash risk than arterial work zone activity area. The merging choice has the dominated effect on risk reduction, suggesting that encouraging vehicles to merge early may be the most effective method to reduce rear-end crash risk at work zone merging area.  相似文献   

2.
This study investigates the drivers’ merging behavior and the rear-end crash risk in work zone merging areas during the entire merging implementation period from the time of starting a merging maneuver to that of completing the maneuver. With the merging traffic data from a work zone site in Singapore, a mixed probit model is developed to describe the merging behavior, and two surrogate safety measures including the time to collision (TTC) and deceleration rate to avoid the crash (DRAC) are adopted to compute the rear-end crash risk between the merging vehicle and its neighboring vehicles. Results show that the merging vehicle has a bigger probability of completing a merging maneuver quickly under one of the following situations: (i) the merging vehicle moves relatively fast; (ii) the merging lead vehicle is a heavy vehicle; and (iii) there is a sizable gap in the adjacent through lane. Results indicate that the rear-end crash risk does not monotonically increase as the merging vehicle speed increases. The merging vehicle's rear-end crash risk is also affected by the vehicle type. There is a biggest increment of rear-end crash risk if the merging lead vehicle belongs to a heavy vehicle. Although the reduced remaining distance to work zone could urge the merging vehicle to complete a merging maneuver quickly, it might lead to an increased rear-end crash risk. Interestingly, it is found that the rear-end crash risk could be generally increased over the elapsed time after the merging maneuver being triggered.  相似文献   

3.
This study analyzes driver's injury severity in single- and two-vehicle crashes and compares the effects of explanatory variables among various types of crashes. The study identified factors affecting injury severity and their effects on severity levels using 5-year crash records for provincial highways in Ontario, Canada. Considering heteroscedasticity in the effects of explanatory variables on injury severity, the heteroscedastic ordered logit (HOL) models were developed for single- and two-vehicle crashes separately. The results of the models show that there exists heteroscedasticity for young drivers (≤30), safety equipment and ejection in the single-vehicle crash model, and female drivers, safety equipment and head-on collision in the two-vehicle crash models. The results also show that young car drivers have opposite effects between single-car and car–car crashes, and sideswipe crashes have opposite effects between car–car and truck–truck crashes. The study demonstrates that separate HOL models for single-vehicle and different types of two-vehicle crashes can identify differential effects of factors on driver's injury severity.  相似文献   

4.
The influence of intersection features on safety has been examined extensively because intersections experience a relatively large proportion of motor vehicle conflicts and crashes. Although there are distinct differences between passenger cars and large trucks-size, operating characteristics, dimensions, and weight-modeling crash counts across vehicle types is rarely addressed. This paper develops and presents a multivariate regression model of crash frequencies by collision vehicle type using crash data for urban signalized intersections in Tennessee. In addition, the performance of univariate Poisson-lognormal (UVPLN), multivariate Poisson (MVP), and multivariate Poisson-lognormal (MVPLN) regression models in establishing the relationship between crashes, traffic factors, and geometric design of roadway intersections is investigated. Bayesian methods are used to estimate the unknown parameters of these models. The evaluation results suggest that the MVPLN model possesses most of the desirable statistical properties in developing the relationships. Compared to the UVPLN and MVP models, the MVPLN model better identifies significant factors and predicts crash frequencies. The findings suggest that traffic volume, truck percentage, lighting condition, and intersection angle significantly affect intersection safety. Important differences in car, car–truck, and truck crash frequencies with respect to various risk factors were found to exist between models. The paper provides some new or more comprehensive observations that have not been covered in previous studies.  相似文献   

5.
Truck-related crashes contribute to a significant percentage of vehicle crashes in the United States, which often result in injuries and fatalities. The amount of truck miles traveled has increased dramatically with the growing rate of freight movement. Regarding truck crashes in the highway work zones, many studies indicated that there was a significant increase in crash severity when a truck crash occurred in work zones. To mitigate the risk of truck crashes in work zones, a portable changeable message sign (PCMS) was frequently utilized in addition to standard temporary traffic control signs and devices required by the Manual on Uniform Traffic Control Devices. To justify the use of a PCMS in work zones, there is a need to study the effective location of a PCMS deployed in a work zone by measuring the changes of truck and passenger car speed profiles. The difference of speed changes between trucks and passenger cars was considered as one of the major reasons which caused truck-related crashes in work zones. Therefore, reducing the difference of speed changes between trucks and passenger cars could potentially improve safety in work zones. The outcomes of this study will provide required knowledge for traffic engineers to effectively utilize the PCMS in work zones with the purpose of reducing truck-related crashes. In addition, the success of this study will provide a roadmap to investigate the effective deployment of other temporary traffic control devices on mitigating the risk of truck-related crashes in work zones.  相似文献   

6.
This research presents a comprehensive analysis of motor vehicle–bicycle crashes using 4 years of reported crash data (2004–2007) in Beijing. The interrelationship of irregular maneuvers, crash patterns and bicyclist injury severity are investigated by controlling for a variety of risk factors related to bicyclist demographics, roadway geometric design, road environment, etc.Results show that different irregular maneuvers are correlated with a number of risk factors at different roadway locations such as the bicyclist age and gender, weather and traffic condition. Furthermore, angle collisions are the leading pattern of motor vehicle–bicycle crashes, and different irregular maneuvers may lead to some specific crash patterns such as head-on or rear-end crashes. Orthokinetic scrape is more likely to result in running over bicyclists, which may lead to more severe injury. Moreover, bicyclist injury severity level could be elevated by specific crash patterns and risk factors including head-on and angle collisions, occurrence of running over bicyclists, night without streetlight, roads without median/division, higher speed limit, heavy vehicle involvement and older bicyclists.This study suggests installation of median, division between roadway and bikeway, and improvement of illumination on road segments. Reduced speed limit is also recommended at roadway locations with high bicycle traffic volume. Furthermore, it may be necessary to develop safety campaigns aimed at male, teenage and older bicyclists.  相似文献   

7.
Validating a driving simulator using surrogate safety measures   总被引:1,自引:1,他引:0  
Traffic crash statistics and previous research have shown an increased risk of traffic crashes at signalized intersections. How to diagnose safety problems and develop effective countermeasures to reduce crash rate at intersections is a key task for traffic engineers and researchers. This study aims at investigating whether the driving simulator can be used as a valid tool to assess traffic safety at signalized intersections. In support of the research objective, this simulator validity study was conducted from two perspectives, a traffic parameter (speed) and a safety parameter (crash history). A signalized intersection with as many important features (including roadway geometries, traffic control devices, intersection surroundings, and buildings) was replicated into a high-fidelity driving simulator. A driving simulator experiment with eight scenarios at the intersection were conducted to determine if the subjects' speed behavior and traffic risk patterns in the driving simulator were similar to what were found at the real intersection. The experiment results showed that speed data observed from the field and in the simulator experiment both follow normal distributions and have equal means for each intersection approach, which validated the driving simulator in absolute terms. Furthermore, this study used an innovative approach of using surrogate safety measures from the simulator to contrast with the crash analysis for the field data. The simulator experiment results indicated that compared to the right-turn lane with the low rear-end crash history record (2 crashes), subjects showed a series of more risky behaviors at the right-turn lane with the high rear-end crash history record (16 crashes), including higher deceleration rate (1.80+/-1.20 m/s(2) versus 0.80+/-0.65 m/s(2)), higher non-stop right-turn rate on red (81.67% versus 57.63%), higher right-turn speed as stop line (18.38+/-8.90 km/h versus 14.68+/-6.04 km/h), shorter following distance (30.19+/-13.43 m versus 35.58+/-13.41 m), and higher rear-end probability (9/59=0.153 versus 2/60=0.033). Therefore, the relative validity of driving simulator was well established for the traffic safety studies at signalized intersections.  相似文献   

8.
Recent advancement in traffic surveillance systems has allowed for obtaining more detailed vehicular movement such as individual vehicle trajectory data. Understanding the characteristics of interactions between leading vehicle and following in the traffic flow stream is a backbone for designing and evaluating more sophisticated traffic and vehicle control strategies. This study proposes a methodology for estimating rear-end crash potential, as a probabilistic measure, in real time based on the analysis of vehicular movements. The methodology presented in this study consists of two components. The first estimates the probability that a vehicle's trajectory belonging to either ‘changing lane’ or ‘going straight’. A binary logistic regression (BLR) is used to model the lane-changing decision of the subject vehicle. The other component derives crash probability by an exponential decay function using time-to-collision (TTC) between the subject vehicle and the front vehicle. Also, an aggregated measure, crash risk index (CRI) is used in the analysis to accumulate rear-end crash potential for each subject vehicle. The result of this study can be used in developing traffic control and information systems, in particular, for crash prevention.  相似文献   

9.
This paper presents an analysis of the effect of the geometric incompatibility of light truck vehicles (LTV)--light-duty trucks, vans, and sport utility vehicles--on drivers' visibility of other passenger cars involved in rear-end collisions. The geometric incompatibility arises from the fact that most LTVs ride higher and are wider than regular passenger cars. The objective of this paper is to explore the effect of the lead vehicle's size on the rear-end crash configuration. Four rear-end crash configurations are defined based on the type of the two involved vehicles (lead and following vehicles). Nested logit models were calibrated to estimate the probabilities of the four rear-end crash configurations as a function of driver's age, gender, vehicle type, vehicle maneuver, light conditions, driver's visibility and speed. Results showed that driver's visibility and inattention in the following (striker) vehicle have the largest effect on being involved in a rear-end collision of configuration CarTrk (a regular passenger car striking an LTV). Possibly, indicating a sight distance problem. A driver of a smaller car following an LTV, have a problem seeing the roadway beyond the LTV, and therefore would not be able to adjust his/her speed accordingly, increasing the probability of a rear-end collision. Also, the probability of a CarTrk rear-end crash increases in the case that the lead vehicle stops suddenly.  相似文献   

10.
Highway work zones interrupt regular traffic flows and create safety problems. Improving safety without sacrificing the main function of highways is a challenging task that traffic engineers and researchers have to confront. In this study, the concept of using crash severity index (CSI) for work zone safety evaluation was proposed and a set of CSI models were developed through the modeling of work zone crash severity outcomes. A CSI is a numerical value between zero and one that is estimated from given work zone variables. It is interpreted as the likelihood of having fatality/fatalities when a severe crash occurs in a given work zone. The CSI models were developed using a three-step approach. First, a wide range of crash variables were examined in a comprehensive manner and the significant risk factors that had impact on crash severity were selected. Second, the CSI models were developed using logistic regression technique by incorporating the selected risk factors. Finally, the developed models were validated using the recent crash data and their ability in assessing work zone risk levels were analyzed. Results of this study showed that CSI models can provide straightforward measurements of work zone risk levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号