首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoscale patterns are fabricated by laser interference lithography (LIL) using Lloyd's mirror interferometer. LIL provides a patterning technology with simple, quick process over a large area without the usage of a mask. Effects of various key parameters for LIL, with 257 nm wavelength laser, are investigated, such as the exposure dosage, the half angle of two incident beams at the intersection, and the power of the light source for generating one or two dimensional (line and dot) nanoscale structures. The uniform dot patterns over an area of 20 mm x 20 mm with the half pitch sizes of around 190, 250, and 370 nm are achieved and by increasing the beam power up to 0.600 mW/cm2, the exposure process time was reduced down to 12/12 sec for the positive photoresist DHK-BF424 (DongJin) over a bare silicon substrate. In addition, bottom anti-reflective coating (DUV-30J, Brewer Science) is applied to confirm improvements for line structures. The advantages and limitations of LIL are highlighted for generating nanoscale patterns.  相似文献   

2.
Cheng X  Li D  Jay Guo L 《Nanotechnology》2006,17(4):927-932
Nanoimprint lithography (NIL) has stimulated great interest in both academic research and industrial development due to its high resolution, high throughput and low cost advantages. Though NIL has been demonstrated to be very successful in replicating nanoscale features, it also has its limitations as a general lithography technique. Its fundamental moulding characteristics (i.e.?physically displacing polymer materials) frequently lead to pattern defects when replicating arbitrary patterns, especially patterns with broad size distribution. To solve this problem, we have developed a combined nanoimprint and photolithography technique that uses a hybrid mould to achieve good pattern definitions. In this work, we applied this technique to fabricate finger-shaped nanoelectrodes, and demonstrated nanoscale pentacene organic thin film transistors (OTFTs). Methods of the hybrid mask-mould (HMM) fabrication and results on the device electrical characteristics are provided. With combined advantages of both photolithography and NIL, and the applicability to general nanoscale device and system fabrication, this method can become a valuable choice for low cost mass production of micro-?and nanoscale structures, devices and systems.  相似文献   

3.
Abstract

We present a simple size reduction technique for fabricating 400 nm zinc oxide (ZnO) architectures using a silicon master containing only microscale architectures. In this approach, the overall fabrication, from the master to the molds and the final ZnO architectures, features cost-effective UV photolithography, instead of electron beam lithography or deep-UV photolithography. A photosensitive Zn-containing sol–gel precursor was used to imprint architectures by direct UV-assisted nanoimprint lithography (UV-NIL). The resulting Zn-containing architectures were then converted to ZnO architectures with reduced feature sizes by thermal annealing at 400 °C for 1 h. The imprinted and annealed ZnO architectures were also used as new masters for the size reduction technique. ZnO pillars of 400 nm diameter were obtained from a silicon master with pillars of 1000 nm diameter by simply repeating the size reduction technique. The photosensitivity and contrast of the Zn-containing precursor were measured as 6.5 J cm?2 and 16.5, respectively. Interesting complex ZnO patterns, with both microscale pillars and nanoscale holes, were demonstrated by the combination of dose-controlled UV exposure and a two-step UV-NIL.  相似文献   

4.
Xia Q  Morton KJ  Austin RH  Chou SY 《Nano letters》2008,8(11):3830-3833
We report a new method to fabricate self-enclosed optically transparent nanofluidic channel arrays with sub-10 nm channel width over large areas. Our method involves patterning nanoscale Si trenches using nanoimprint lithography (NIL), sealing the trenches into enclosed channels by ultrafast laser pulse melting and shrinking the channel sizes by self-limiting thermal oxidation. We demonstrate that 100 nm wide Si trenches can be sealed and shrunk to 9 nm wide and that lambda-phage DNA molecules can be effectively stretched by the channels.  相似文献   

5.
We have discovered a micro/nanopatterning technique based on the patterning of a PDMS membrane/film, which involves bonding a PDMS structure/stamp (that has the desired patterns) to a PDMS film. The technique, which we call "bond-detach lithography", was demonstrated (in conjunction with other microfabrication techniques) by transferring several micro- and nanoscale patterns onto a variety of substrates. Bond-detach lithography is a parallel process technique in which a master mold can be used many times, and is particularly simple and inexpensive.  相似文献   

6.
Nanopatterns on titanium may enhance endosseous implant biofunctionality. To enable biological studies to prove this hypothesis, we developed a scalable method of fabricating nanogrooved titanium substrates. We defined nanogrooves by nanoimprint lithography (NIL) and a subsequent pattern transfer to the surface of ASTM grade 2 bulk titanium applying a soft-mask for chlorine-based reactive ion etching (RIE). With respect to direct write lithographic techniques the method introduced here is fast and capable of delivering uniformly patterned areas of at least 4 cm(2). A dedicated silicon nanostamp process has been designed to generate the required thickness of the soft-mask for the NIL-RIE pattern transfer. Stamps with pitch sizes from 1000 nm down to 300 nm were fabricated using laser interference lithography (LIL) and deep cryogenic silicon RIE. Although silicon nanomachining was proven to produce smaller pitch sizes of 200 nm and 150 nm respectively, successful pattern transfer to titanium was only possible down to a pitch of 300 nm. Hence, the smallest nanogrooves have a width of 140 nm. An x-ray photoelectron spectroscopy study showed that only very few contaminations arise from the fabrication process and a cytotoxicity assay on the nanopatterned surfaces confirmed that the obtained nanogrooved titanium specimens are suitable for in vivo studies in implantology research.  相似文献   

7.
Liang X  Zhang W  Li M  Xia Q  Wu W  Ge H  Huang X  Chou SY 《Nano letters》2005,5(3):527-530
We present and demonstrate a novel imprint method, electrostatic force-assisted nanoimprint lithography (EFAN), where a voltage applied between a mold and a substrate generates an electrostatic force that presses the mold into a resist on the substrate. We have successfully used EFAN to pattern nanostructures in a photocurable resist spin-coated on a wafer, with high fidelity and excellent uniformity over the entire substrate, in ambient atmosphere without using a vacuum chamber. In initial tests without any process optimization, 100 nm half-pitch gratings with a residual layer thickness of 22+/-5 nm were imprinted across a 100 mm diameter wafer in about 2 s. Furthermore, numerical calculations show that the field magnitude experienced by the dielectric layers on the substrate is much less than their breakdown limit. Hence, EFAN is well suited for step-and-repeat nanoimprint lithography, and its simple operation can simplify and speed up multilayer alignment process.  相似文献   

8.
紫外光固化纳米压印是实现纳米结构批量复制的一种新技术.其特点是低成本和高分辨,而且可以达到极高的套刻精度.为了得到大面积图案的均匀复制,可用聚二甲基硅氧烷(PDMS)制备透光的压印软模板.其母版图案可由高分辨率电子柬曝光和反应离子刻蚀的方法在硅片基底上获得,然后用浇注的方法将图案转移到PDMS上.本实验特别发展了紫外光固化纳米压印适用于软膜压印的双层膜图型转移技术.该双层膜由廉价的光胶和聚甲基丙烯酸甲脂(PMMA)构成.对光胶层的压印可用普通的光学曝光仪实现.然后再将图案用反应离子刻蚀的方法转移到PMMA层中.为了证明方案的可行性,在两种不同材料的半导体基片上压印了三角晶格的光子晶体和准晶结构的图案,并用剥离的方法将它们转移到金属薄膜上,最后成功地进行了硅片刻蚀实验.相信这一纳米制做方法对大面积纳米光子结构和光学集成芯片的制造是普遍适用的.  相似文献   

9.
Kim YS  Lee K  Lee JS  Jung GY  Bae Kim W 《Nanotechnology》2008,19(36):365305
A nanoscale tubular carbon structure array was demonstrated as a mold for nanoimprint lithography (NIL), in which a vertically formed and hexagonally aligned nanoscale tubular carbon array was fabricated through carbon growth inside an anodic aluminum oxide (AAO) nanotemplate, followed by controlled chemical etching of the AAO layer. High density (over 10(10)?cm(-2)) of the nanoscale carbon pillars with their controlled diameters and protruded lengths was inversely replicated onto a UV-curable resist for the first time using the imprinting lithography technique.  相似文献   

10.
We describe a self-limiting, low-energy argon-ion-milling process that enables noncircular device patterns, such as squares or hexagons, to be formed using precursor arrays of uniform circular openings in poly(methyl methacrylate) defined using electron beam lithography. The proposed patterning technique is of particular interest for bit-patterned magnetic recording medium fabrication, where square magnetic bits result in improved recording system performance. Bit-patterned magnetic medium is among the primary candidates for the next generation magnetic recording technologies and is expected to extend the areal bit density limits far beyond 1 Tbit/in(2). The proposed patterning technology can be applied either for direct medium prototyping or for manufacturing of nanoimprint lithography templates or ion beam lithography stencil masks that can be utilized in mass production.  相似文献   

11.
High density metal cross bars at 17 nm half-pitch were fabricated by nanoimprint lithography. Utilizing the superlattice nanowire pattern transfer technique, a 300-layer GaAs/AlGaAs superlattice was employed to produce an array of 150 Si nanowires (15 nm wide at 34 nm pitch) as an imprinting mold. A successful reproduction of the Si nanowire pattern was demonstrated. Furthermore, a cross-bar platinum nanowire array with a cell density of approximately 100 Gbit/cm(2) was fabricated by two consecutive imprinting processes.  相似文献   

12.
Identical patterns and characteristics of sub-100 nm TiO2-based memristive systems on 4 inch silicon substrates were demonstrated using Step and flash imprint lithography (SFIL). SFIL is a nanoimprint lithography technique that offers the advantagess of a high aspect-ratio, reliable nano-patterns, and a transparent stamp that can be used to facilitate overlay techniques. The overlay process from the alignment system in IMPRIO 100 was appropriate for the fabrication of nanoscale crossbar arrays in this study. High-density crossbar arrays that consisted of TiO2 resistive switching material that was sandwiched between Pt electrodes with a width of 80 nm and a half-pitch of 100 nm were in turn replicated through successive imprinting and etching processes. The use of the direct metal etching process enhanced the uniformity of the TiO2/Pt interface. The electrical property of the crossbar arrays showed the bipolar switching behavior that resulted in the application of the nonvolatile resistive memory.  相似文献   

13.
A step and repeat UV nanoimprint lithography process on pre-spin coated resist film is demonstrated for patterning a large area with features sizes down to sub-15 nm. The high fidelity between the template and imprinted structures is verified with a difference in their line edge roughness of less than 0.5 nm (3σ deviation value). The imprinted pattern's residual layer is well controlled to allow direct pattern transfer from the resist into functional materials with very high resolution. The process is suitable for fabricating numerous nanodevices.  相似文献   

14.
This paper presents the fabrication of a thin and flexible polydimethylsiloxane (PDMS) stamp with a thickness of a few tens of um and its application to nanoimprint lithography (NIL). The PDMS material generally has a low elastic modulus and high adhesive characteristics. Therefore, after being treated, the thin PDMS stamp is easily deformed and torn, adhering to itself and other materials. This paper introduces the use of a metal ring around the flange of a thin PDMS stamp to assist with the handling of this material. A PDMS stamp with a motheye pattern in nanometer scale was inserted between a substrate and a microstamp with concave patterns in micrometer scale. Subsequently, three-dimensional (3D) hybrid nano/micropatterns were fabricated by pressing these two stamps and curing the resist. The fabricated hybrid patterns were measured and verified in both the microscale and nanoscale. The process, termed "dual NIL," can be applied to the fabrication of optical components or bio-sensors that require repetitive nanopatterns on micropatterns.  相似文献   

15.
用于100nm节点ArF准分子激光光刻的相移掩模(PSM)技术主要有无铬相移掩模(CPM),交替相移掩模(APSM)、衰减相移掩模(AttPSM)和混合相移掩模技术。对这些掩模的基本原理、制作方法及性能比较进行了分析研究。研究表明,无铬相位光刻(CPL)PSM和高透AttPSM 相结合构成的混合掩模最适合用于193nmArF光刻,以产生100nm节点抗蚀剂图形。  相似文献   

16.
A novel strategy for fabricating nanoimprint templates with sub-10 nm patterns is demonstrated by combining electron beam lithography and atomic layer deposition. Nanostructures are replicated by step-and-repeat nanoimprint lithography and successfully transferred into functional material with high fidelity. The process extends the capacity of step-and-repeat nanoimprint lithography as a single digit nanofabrication method. Using the ALD process for feature shrinkage, we identify a size dependent deposition rate.  相似文献   

17.
Existing techniques for electron- and ion-beam lithography, routinely employed for nanoscale device fabrication and mask/mold prototyping, do not simultaneously achieve efficient (low fluence) exposure and high resolution. We report lithography using neon ions with fluence <1 ion/nm(2), ~1000× more efficient than using 30 keV electrons, and resolution down to 7 nm half-pitch. This combination of resolution and exposure efficiency is expected to impact a wide array of fields that are dependent on beam-based lithography.  相似文献   

18.
The miniaturization limits of electronic and mechanical devices depend on the minimum pattern periodicity that is stable in ambient conditions. Here we demonstrate an atomic force microscopy lithography that enables the patterning of 2 nm organic structures with 6 nm periodicities in air. We also demonstrate that the lithography can be up-scaled for parallel patterning. The method is based on the formation of a nanoscale octane meniscus between a sharp conductive protrusion and a silicon (100) surface. The application of a high electrical field ( approximately 10 V/nm) produces the polymerization and cross-linking of the octane molecules within the meniscus followed by their deposition. The resulting pattern periodicities are very close to the ultimate theoretical limits achievable in air ( approximately 3 nm). The chemical composition of the patterns has been characterized by photoemission spectroscopy.  相似文献   

19.
Scanning probe lithography is used to directly pattern monolayer transition metal dichalcogenides (TMDs) without the use of a sacrificial resist. Using an atomic‐force microscope, a negatively biased tip is brought close to the TMD surface. By inducing a water bridge between the tip and the TMD surface, controllable oxidation is achieved at the sub‐100 nm resolution. The oxidized flake is then submerged into water for selective oxide removal which leads to controllable patterning. In addition, by changing the oxidation time, thickness tunable patterning of multilayer TMDs is demonstrated. This resist‐less process results in exposed edges, overcoming a barrier in traditional resist‐based lithography and dry etch where polymeric byproduct layers are often formed at the edges. By patterning monolayers into geometric patterns of different dimensions and measuring the effective carrier lifetime, the non‐radiative recombination velocity due to edge defects is extracted. Using this patterning technique, it is shown that selenide TMDs exhibit lower edge recombination velocity as compared to sulfide TMDs. The utility of scanning probe lithography towards understanding material‐dependent edge recombination losses without significantly normalizing edge behaviors due to heavy defect generation, while allowing for eventual exploration of edge passivation schemes is highlighted, which is of profound interest for nanoscale electronics and optoelectronics.  相似文献   

20.
Ultraviolet nanoimprint lithography (UV-NIL) is a high volume and cost-effective patterning technique with sub-10 nm resolution. It has great potential as a candidate for next generation lithography. Using UV-NIL, nanowire patterns were successfully fabricated on a four-inch silicon-on-insulator (SOI) wafer under moderate conditions. The fabricated nanowire patterns were characterized by FE-SEM. Its electrical properties were confirmed by semiconductor parameter analysis. Monoclonal antibodies against beta-amyloid (1-42) were immobilized on the silicon nanowire using a chemical linker. Using this fabricated silicon nanowire device, beta-amyloid (1-42) levels of 1 pM to 100 nM were successfully determined from conductance versus time characteristics. Consequently, the nanopatterned SOI nanowire device can be applied to bioplatforms for the detection of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号