首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
High density nano-scale deformation twins were introduced in the surface layer of Cu sample by means of surface mechanical attrition treatment (SMAT) at room temperature. The Cu sample with deformation twins shows a yield strength of about 470 MPa in tension tests. The significant strengthening may be attributed to the effective inhibition of slip dislocations by abundant twin boundaries.  相似文献   

2.
The interracial phenomena of the Sn-Pb solder droplet on and needle-like AuSn4 are formed at the interface after Au/Ni/Cu pad are investigated. A continuous AuSn2 the liquid state reaction (soldering). The interracial reaction between the solder and Au layer continues during solid state aging with AuSn4 breaking off from the interface and felling into the solder. The kinetics of Au layer dissolution and diffusion into the solder during soldering and aging is analyzed to elucidate intermetallic formation mechanism at the solder/Au pad interface. The concentration of Au near the solder/pad interface is identified to increase and reach the solubility limit during the period of liquid state reaction. During solid state reaction, the thickening of Au-Sn compound is mainly controlled by element diffusion.  相似文献   

3.
Thin films of copper indium gallium selenide Cu(In,Ga)Se2 (CIGS) were prepared by sequential elemental layer deposition in vacuum at room temperature. The as-deposited films were heated in vacuum for compound formation, and were studied at temperature as high as 1250℃ for the first time. These films were concurrently studied for their structural properties by X-ray diffraction (XRD) technique. The XRD analyses include phase transition studies, grain size variation and microstrain measurements with the reaction temperature and time.It has been observed that there are three distinct regions of variation in all these parameters. These regions belong to three temperature regimes: 〈450℃, 450-950℃, and 〉950℃. It is also seen that the compound formation starts at 250℃, with ternary phases appearing at 350℃ or above. Whereas, there is another phase shift at 950℃ without any preference to the quaternary compound.  相似文献   

4.
The synthesis of Cu-doped ZnO nanosheets at room temperature was reported in our previous paper. The effects of annealing temperature on Cu-doped ZnO nanosheets were studied in this paper. Cu-doped ZnO nanosheets were annealed at 200-500℃ in air. The annealed specimens were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that Cu concentration in Cu-doped ZnO nanosheets reduced with increasing annealing temperature. When annealing temperature was lower than Zn melting point (410℃), the morphologies of the Cu-doped ZnO nanosheets remained nearly the same as that before annealing. However, when the annealing temperature was over Zn melting point, Cu-doped ZnO nanosheets changed to nanowires, wormlike nanosheets or did not change. The change of Cu concentration in Cu-doped ZnO nanosheets is explained by oxidation thermodynamics. A physical model is suggested to explain the morphology changes of Cu-doped ZnO nanosheets, based on the existence of Cu-rich layer beneath Cu-doped ZnO nanosheets.  相似文献   

5.
The diffusion behavior and reactions between Al and Ca in Mg alloys by diffusion couple method were investigated. Results demonstrate that Al_2Ca is the only phase existing in the diffusion reaction layers.The volume fraction of Al_2Ca in diffusion reaction layers increases linearly with temperature. The standard enthalpy of formation for intermetallic compounds was rationalized on the basis of the Miedema model. Al-Ca intermetallic compounds were preferable to form in the Mg-Al-Ca ternary system under the same conditions. Over the range of 350–400?C, the structure of Al_2Ca is more stable than that of Al_4Ca, Al_(14)Ca_(13) and Al_3Ca_8. The growth constants of the layer Ⅰ, layer Ⅱ and entire diffusion reaction layers were determined. The activation energies for the growth of the layer Ⅰ, layer Ⅱ and entire diffusion reaction layers were(80.74 ± 3.01) k J/mol,(93.45 ± 2.12) k J/mol and(83.52 ± 1.50) k J/mol, respectively.In layer Ⅰ and Ⅱ, Al has higher integrated interdiffusion coefficients D~(Int, layer)ithan Ca. The average effective interdiffusion coefficients D_(Al)~(eff) values are higher than D_(Ca)~(eff) in the layer Ⅰ and Ⅱ.  相似文献   

6.
Top and bottom NiO-pinning spin valves of Si/Ta/NiO/Co/Cu/Co/Ta and Si/Ta/Co/Cu/Co/NiO/Ta were prepared by magnetron sputtering, and X-ray diffraction and giant magnetoresistance (GMR) ratio were measured in the temperature range from 5 to 300 K. For the bottom spin valve, the interracial roughness at NiO/Co is much smaller than that of Co/NiO in the top one. The Co/Cu and Cu/Co interfaces have the same roughness in the bottom and the top spin valves. NiO, Co, and Cu layers have (111) preferred orientations in the top one and random orientations in the bottom one. The GMR ratio of the bottom spin valve is larger than that of the top one at all temperatures and their difference increases with decreasing temperature.  相似文献   

7.
Three novel Cu–Ni–Al brazing filler alloys with Cu/Ni weight ratio of 4:1 and 2.5–10 wt% Al were developed and characterized, and the wetting of three Cu–Ni–Al alloys on WC–8 Co cemented carbide were investigated at 1190–1210?C by the sessile drop technique. Vacuum brazing of the WC–8 Co cemented carbide to SAE1045 steel using the three Cu–Ni–Al alloys as filler metal was further carried out based on the wetting test results. The interfacial interactions and joint mechanical behaviors involving microhardness, shear strength and fracture were analyzed and discussed. The experimental results show that all the three wetting systems present excellent wettability with final contact angles of less than 5?and fast spreading. An obvious degeneration layer with continuous thin strip forms in the cemented carbide adjacent to the Cu–Ni–Al/WC–8 Co interface. The variation of microhardness in the joint cross-section is closely related to the interactions(such as diffusion and solid solution) of WC–8 Co/Cu–Ni–Al/steel system. Compared with the other two brazed joints, the WC–8 Co/Cu–19 Ni–5 Al/steel brazed joint presents more reliable interlayer microstructure and mechanical property while brazing at the corresponding wetting temperatures for 5 min, and its average shear strength is over 200 MPa after further optimizing the brazing temperature and holding time. The joint shear fracture path passes along the degeneration layer, Cu–Ni–Al/WC–8 Co interface and brazing interlayer, showing a mixed ductile-brittle fracture.  相似文献   

8.
The wetting behavior of molten Bi on polycrystalline Cu substrate and single crystal Cu substrate was studied by the sessile drop method in the temperature range from 673 to 873K. At low temperature the wetting behaviors of molten Bi on both types of Cu substrate were similar. However, at high temperature, the equilibrium contact angle of polycrystalline Cu substrate was lower than that of single crystal Cu substrate, because the preferred dissolution of grain boundaries leads to a smaller liquid/solid interracial energy for polycrystalline Cu substrate. The formation mechanism of arrow-shaped Cu grains at the Bi/single crystal Cu interface is also discussed.  相似文献   

9.
The effective surface treatment method for steel insert composited with Al base metal by expendable pattern casting (EPC) process and the bonding interface between steel insert and Al base metal were investigated.It was found that Zn plating on steel insert was effective on improving the bonding property between steel insert and Al base metal in EPC process.Zn is thought to promote the formation of diffusion layer.But almost none content of Zn was observed in the boundary which had been plated on the steel insert.A diffusion layer consisting of Al,Si and Fe was formed at the insert/alloy interface and its hardness was higher than the steel insert as matter of course Al base metal.This layer turned out to be intermetallic compounds of Al-Si-Fe system.Higher pouring temperature promoted the diffusion of Fe into Al alloy,so Fe content in intermetallic layers increased at higher pouring temperature.The layer nearest to steel disappeared due to applied pressure.  相似文献   

10.
The thermal properties of high-alumina fibrous insulation which filled in metallic thermal protection system were investigated. The effective thermal conductivities of the fibrous insulation were measured under an atmospheric pressure from 10^-2 to 10^5 Pa. In addition, the changes of the specific heat and Rosseland mean extinction coefficient were experimentally determined under various surrounding temperatures up to 973 K. The spectral extinction coefficients were obtained from transmittance data in the wavelength range of 2.5- 25 μm using Beer's law. Rosseland mean extinction coefficients as a function of temperature were calculated based on spectral extinction coefficients at various temperatures. The results show that thermal conductivities of the sample increase with increasing temperature and pressure. Specific heat increases as temperature increases, which shows that the capacity of heat absorption increases gradually with temperature. Rosseland mean extinction coefficients of the sample decrease firstly and then increase with increasing the temperature.  相似文献   

11.
研究了覆盖层为铁磁性的Fe和非铁磁性的Ti、Cu的Co/Cu/Co三明治在室温和低温下的巨磁电阻效应。实验结果表明,室温下有覆盖层时,Co/Cu/Co三明治的巨磁电阻效应值没有明显变化,但以Fe为覆盖层的样品的矫顽力和饱和场明显减小,而Ti、Cu覆盖层对三明治样品的矫顽力和饱和场无太大的影响。温度降低时,覆盖层使Co/Cu/Co三明治的巨磁电阻值显著增加,表明样品的巨磁电阻效应与覆盖层及其与上层Co所形成的界面密切相关。  相似文献   

12.
Proper understanding of the degradation mechanisms and diffusion kinetics of copper and cobalt interconnections for advanced microelectronics is important from the point of view of fundamental research and technology as well. In this paper Si(substrate)/Ta(10 nm)/Cu(25 nm)/W(10 nm) and Si(substrate)/Co(150 nm)/Ta(10 nm) samples, prepared by DC magnetron sputtering, were in investigated. The samples were annealed at several temperatures ranging from 423 K to 823 K for various times. The composition distributions were detected by means of Secondary Neutral Mass Spectrometry (SNMS). Microstructural characterization of samples was carried out by means of Transmission Electron Microscopy (TEM). It is shown that the changes in the composition profiles were mainly caused by grain boundary, GB, diffusion and the effective GB diffusion coefficients of Ta in Cu were determined both by the “first appearance” and “centre-gradient” methods. The activation energy is 100 kJ/mol. The importance of the Ta penetration into the Cu and its accumulation at the Cu/W interface can lead to an increase of the Ta content in the copper film. This can be an important factor in the change/degradation of the physical parameters (e.g. the electrical resistance) of interconnects. Furthermore a Ta segregation factor in Cu was evaluated. Preliminary results in the Si(substrate)/Co(150 nm)/Ta(10 nm) indicate fast (GB) diffusion of the Si into the Co layer, formation of a cobalt silicide layer at the Co/Si interface and Si accumulation first at the Ta/Co interface and later a retarded accumulation at the free Ta surface.  相似文献   

13.
Proper understanding of the degradation mechanisms and diffusion kinetics of copper and cobalt interconnections for advanced microelectronics is important from the point of view of fundamental research and technology as well. In this paper Si(substrate)/Ta(10 nm)/Cu(25 nm)/W(10 nm) and Si(substrate)/Co(150 nm)/Ta(10 nm) samples, prepared by DC magnetron sputtering, were in investigated. The samples were annealed at several temperatures ranging from 423 K to 823 K for various times. The composition distributions were detected by means of Secondary Neutral Mass Spectrometry (SNMS). Microstructural characterization of samples was carried out by means of Transmission Electron Microscopy (TEM). It is shown that the changes in the composition profiles were mainly caused by grain boundary, GB, diffusion and the effective GB diffusion coefficients of Ta in Cu were determined both by the “first appearance” and “centre-gradient” methods. The activation energy is 100 kJ/mol. The importance of the Ta penetration into the Cu and its accumulation at the Cu/W interface can lead to an increase of the Ta content in the copper film. This can be an important factor in the change/degradation of the physical parameters (e.g. the electrical resistance) of interconnects. Furthermore a Ta segregation factor in Cu was evaluated. Preliminary results in the Si(substrate)/Co(150 nm)/Ta(10 nm) indicate fast (GB) diffusion of the Si into the Co layer, formation of a cobalt silicide layer at the Co/Si interface and Si accumulation first at the Ta/Co interface and later a retarded accumulation at the free Ta surface.  相似文献   

14.
用超高真空电子束蒸发方法成功制备了以不同厚度Fe为过渡层的Co/Cu/Co三明治巨磁电阻样品,与以Cr为过渡层的Co/Cu/Co三明治巨磁电阻样品比较,样品的矫顽力大大减小,因而样品的磁灵敏度有了较大地提高。当Fe过渡层的厚度为7nm时样品的磁电阻值最大。另外,温度更强烈地影响以Fe为过渡层样品的磁电阻值,在77K下样品的磁电阻曲线表现出明显的不对称性,它来源于低温下fcc Fe过渡层的反铁磁性转变。  相似文献   

15.
基于NiFeCo/Cu多层膜巨磁电阻效应的磁微球检测   总被引:1,自引:0,他引:1  
分析了应用于磁性生物检测的GMR传感器的工作原理.直流磁控溅射法制备了Ni65Fe15CO20/Cu多层膜,研究了室温下多层膜的GMR效应对缓冲层(NiFeCo)厚度、间隔层(Cu)厚度及铁磁层(NiFeCo)厚度等参数的依赖关系,得到了GMR值达8.8%的多层膜样品:缓冲层(NiFeCo)5nm,间隔层(Cu)2.4nm,铁磁层(NiFeCo)1.6nm,且饱和场低、磁滞小、灵敏度较高,符合磁性生物检测技术的要求.制备了基于优化参数NiFeCo/Cu多层膜的GMR传感器,对器件的性能进行了测试,结果表明所制备的GMR传感器能够检测磁微球.  相似文献   

16.
采用超高真空电子束蒸发方法在硅单晶衬底上制备了Co/Cu/Co三明治膜,研究了衬底晶向、过渡工层材料和生长室温度对三明治膜中巨磁电阻效应的影响;结合原子力显微镜表面形貌观察,探讨了三明治膜表面(界面)组糙度与其巨磁电阻效应的内在关系;还分析了三明治膜经高温热退火后巨磁电阻效应退化的物理机制。  相似文献   

17.
用高真空电子束蒸发方法制备了以半导体材料Si 为过渡层的Co/Cu/Co三明治膜并研究了其巨磁电阻效应。当Si 过渡层厚度达到0.9nm 时,三明治膜中开始出现较强的平面内磁各向异性。在Si1.5nm/Co 5nm/Cu 3nm/Co 5nm结构中,在其易轴上得到了5 .5% 的巨磁电阻值和0.9 %/Oe 的高磁场灵敏度。研究了过渡层Si/Co 界面之间的相互扩散,发现在过渡层Si 与Co 层间形成了CoSi 化合物。这个硅化物界面层诱导了三明治膜的平面内磁各向异性,从而导致了易轴上高灵敏度巨磁电阻效应。  相似文献   

18.
采用直流磁控溅射技术和光刻工艺制备了Cr/Cu/Ag/Cu/Cr复合薄膜及其电极,研究不同温度热处理对复合薄膜和电极结构、表面形貌和电性能的影响。Ag层与最外层的Cr层之间的Cu层不仅增强了Cr和Ag之间的粘附力,而且起到了牺牲层和氧气阻挡层的作用;Cr和Cu对Ag的双重保护使得薄膜电极在温度小于500℃时电阻率保持较为稳定,约为3.0×10-8~4.2×10-8Ω·m之间。然而由于电极表面氧化和边沿氧化的共同作用,薄膜电极的电阻率在热处理温度超过575℃出现了显著的上升。尽管如此,Cr/Cu/Ag/Cu/Cr薄膜电极仍然是一种能够承受高温热处理并且保持较低电阻率的新型电极,满足场发射平板显示器封接过程中的热处理要求。  相似文献   

19.
采用铆钉法制备了Al/Cu/Mg三元扩散偶,在真空炉进行扩散反应,利用SEM背散射电子像和微区电子探针分析,研究了扩散反应层的特征。在450℃下,Al/Cu/Mg三元扩散偶的三元交界处生成了五个三元化合物:Al6CuMg4,Al7Cu3Mg6,Al2CuMg,Al5Cu6Mg2和Cu5Al3。  相似文献   

20.
Highly uniform Co/Cu multilayer nanowire arrays had been electrodeposited into the nanochannels of porous anodic aluminum oxide template. X-ray diffraction pattern showed that Co and Cu grow in their HCP and FCC structures, respectively. Each nanowire had the same length with 20 μm and the diameter with 50 nm. The thickness of Co was 50 nm and Cu layer was about 5 nm. Magnetic measurements of the nanowire arrays showed that the magnetic coercivity for the applied field parallel to the nanowires is larger than that perpendicular to the anowires. The magnetic coercivity of Co multilayer nanowire arrays is smaller than that of the Co/Cu nanowire arrays and the crystal direction of Co layers were not obviously affected by Cu layer. The Co/Cu nanowire arrays exhibited excellent Giant Magneto Resistive ratio of about 75%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号