首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The study proposes a convex combination (CC) algorithm to fast and stably train a neural network (NN) model for crash injury severity prediction, and a modified NN pruning for function approximation (N2PFA) algorithm to optimize the network structure. To demonstrate the proposed approaches and to compare them with the NN trained by traditional back-propagation (BP) algorithm and an ordered logit (OL) model, a two-vehicle crash dataset in 2006 provided by the Florida Department of Highway Safety and Motor Vehicles (DHSMV) was employed. According to the results, the CC algorithm outperforms the BP algorithm both in convergence ability and training speed. Compared with a fully connected NN, the optimized NN contains much less network nodes and achieves comparable classification accuracy. Both of them have better fitting and predicting performance than the OL model, which again demonstrates the NN’s superiority over statistical models for predicting crash injury severity. The pruned input nodes also justify the ability of the structure optimization method for identifying the factors irrelevant to crash-injury outcomes. A sensitivity analysis of the optimized NN is further conducted to determine the explanatory variables’ impact on each injury severity outcome. While most of the results conform to the coefficient estimation in the OL model and previous studies, some variables are found to have non-linear relationships with injury severity, which further verifies the strength of the proposed method.  相似文献   

2.
This study proposes a Bayesian spatial joint model of crash prediction including both road segments and intersections located in an urban road network, through which the spatial correlations between heterogeneous types of entities could be considered. A road network in Hillsborough, Florida, with crash, road, and traffic characteristics data for a three-year period was selected in order to compare the proposed joint model with three site-level crash prediction models, that is, the Poisson, negative binomial (NB), and conditional autoregressive (CAR) models. According to the results, the CAR and Joint models outperform the Poisson and NB models in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-entity spatial correlations. Although the goodness-of-fit and predictive performance of the CAR and Joint models are equivalent in this case study, spatial correlations between segments and the connected intersections are found to be more significant than those solely between segments or between intersections, which supports the employment of the Joint model as an alternative in road-network-level safety modeling.  相似文献   

3.
This study aimed to investigate the relative performance of two models (negative binomial (NB) model and two-component finite mixture of negative binomial models (FMNB-2)) in terms of developing crash modification factors (CMFs). Crash data on rural multilane divided highways in California and Texas were modeled with the two models, and crash modification functions (CMFunctions) were derived. The resultant CMFunction estimated from the FMNB-2 model showed several good properties over that from the NB model. First, the safety effect of a covariate was better reflected by the CMFunction developed using the FMNB-2 model, since the model takes into account the differential responsiveness of crash frequency to the covariate. Second, the CMFunction derived from the FMNB-2 model is able to capture nonlinear relationships between covariate and safety. Finally, following the same concept as those for NB models, the combined CMFs of multiple treatments were estimated using the FMNB-2 model. The results indicated that they are not the simple multiplicative of single ones (i.e., their safety effects are not independent under FMNB-2 models). Adjustment Factors (AFs) were then developed. It is revealed that current Highway Safety Manual’s method could over- or under-estimate the combined CMFs under particular combination of covariates. Safety analysts are encouraged to consider using the FMNB-2 models for developing CMFs and AFs.  相似文献   

4.
Head-on crashes are among the most severe collision types and of great concern to road safety authorities. Therefore, it justifies more efforts to reduce both the frequency and severity of this collision type. To this end, it is necessary to first identify factors associating with the crash occurrence. This can be done by developing crash prediction models that relate crash outcomes to a set of contributing factors. This study intends to identify the factors affecting both the frequency and severity of head-on crashes that occurred on 448 segments of five federal roads in Malaysia. Data on road characteristics and crash history were collected on the study segments during a 4-year period between 2007 and 2010. The frequency of head-on crashes were fitted by developing and comparing seven count-data models including Poisson, standard negative binomial (NB), random-effect negative binomial, hurdle Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models. To model crash severity, a random-effect generalized ordered probit model (REGOPM) was used given a head-on crash had occurred. With respect to the crash frequency, the random-effect negative binomial (RENB) model was found to outperform the other models according to goodness of fit measures. Based on the results of the model, the variables horizontal curvature, terrain type, heavy-vehicle traffic, and access points were found to be positively related to the frequency of head-on crashes, while posted speed limit and shoulder width decreased the crash frequency. With regard to the crash severity, the results of REGOPM showed that horizontal curvature, paved shoulder width, terrain type, and side friction were associated with more severe crashes, whereas land use, access points, and presence of median reduced the probability of severe crashes. Based on the results of this study, some potential countermeasures were proposed to minimize the risk of head-on crashes.  相似文献   

5.
Spatial analysis of fatal and injury crashes in Pennsylvania   总被引:1,自引:0,他引:1  
Using injury and fatal crash data for Pennsylvania for 1996-2000, full Bayes (FB) hierarchical models (with spatial and temporal effects and space-time interactions) are compared to traditional negative binomial (NB) estimates of annual county-level crash frequency. Covariates include socio-demographics, weather conditions, transportation infrastructure and amount of travel. FB hierarchical models are generally consistent with the NB estimates. Counties with a higher percentage of the population under poverty level, higher percentage of their population in age groups 0-14, 15-24, and over 64 and those with increased road mileage and road density have significantly increased crash risk. Total precipitation is significant and positive in the NB models, but not significant with FB. Spatial correlation, time trend, and space-time interactions are significant in the FB injury crash models. County-level FB models reveal the existence of spatial correlation in crash data and provide a mechanism to quantify, and reduce the effect of, this correlation. Addressing spatial correlation is likely to be even more important in road segment and intersection-level crash models, where spatial correlation is likely to be even more pronounced.  相似文献   

6.
A recently developed machine learning technique, multivariate adaptive regression splines (MARS), is introduced in this study to predict vehicles’ angle crashes. MARS has a promising prediction power, and does not suffer from interpretation complexity. Negative Binomial (NB) and MARS models were fitted and compared using extensive data collected on unsignalized intersections in Florida. Two models were estimated for angle crash frequency at 3- and 4-legged unsignalized intersections. Treating crash frequency as a continuous response variable for fitting a MARS model was also examined by considering the natural logarithm of the crash frequency. Finally, combining MARS with another machine learning technique (random forest) was explored and discussed. The fitted NB angle crash models showed several significant factors that contribute to angle crash occurrence at unsignalized intersections such as, traffic volume on the major road, the upstream distance to the nearest signalized intersection, the distance between successive unsignalized intersections, median type on the major approach, percentage of trucks on the major approach, size of the intersection and the geographic location within the state. Based on the mean square prediction error (MSPE) assessment criterion, MARS outperformed the corresponding NB models. Also, using MARS for predicting continuous response variables yielded more favorable results than predicting discrete response variables. The generated MARS models showed the most promising results after screening the covariates using random forest. Based on the results of this study, MARS is recommended as an efficient technique for predicting crashes at unsignalized intersections (angle crashes in this study).  相似文献   

7.
Count models such as negative binomial (NB) regression models are normally employed to establish a relationship between area-wide traffic crashes and the contributing factors. Since crash data are collected with reference to location measured as points in space, spatial dependence exists among the area-level crash observations. Although NB models can take account of the effect of unobserved heterogeneity (due to omitted variables in the model) among neighbourhoods, such models may not account for spatial correlation areas. It is then essential to adopt an econometric model that takes account of both spatial dependence and uncorrelated heterogeneity simultaneously among neighbouring units. In studying the spatial pattern of traffic crashes, two types of spatial models may be employed: (i) classical spatial models for higher levels of spatial aggregation such as states, counties, etc. and (ii) Bayesian hierarchical models for all spatial units, especially for smaller scale area-aggregations. Therefore, the primary objectives of this paper is to develop a series of relationships between area-wide different traffic casualties and the contributing factors associated with ward characteristics using both non-spatial models (such as NB models) and spatial models and to identify the similarities and differences among these relationships. The spatial units of the analysis are the 633 census wards from the Greater London metropolitan area. Ward-level casualty data are disaggregated by severity of the casualty (such as fatalities, serious injuries, and slight injuries) and by severity of the casualty related to various road users. The analysis implies that different ward-level factors affect traffic casualties differently. The results also suggest that Bayesian hierarchical models are more appropriate in developing a relationship between area-wide traffic crashes and the contributing factors associated with the road infrastructure, socioeconomic and traffic conditions of the area. This is because Bayesian models accurately take account of both spatial dependence and uncorrelated heterogeneity.  相似文献   

8.
This paper presents a dynamic model of wireless sensor networks (WSNs) and its application to sensor node fault detection. Recurrent neural networks (NNs) are used to model a sensor node, the node's dynamics, and interconnections with other sensor network nodes. An NN modeling approach is used for sensor node identification and fault detection in WSNs. The input to the NN is chosen to include previous output samples of the modeling sensor node and the current and previous output samples of neighboring sensors. The model is based on a new structure of a backpropagation-type NN. The input to the NN and the topology of the network are based on a general nonlinear sensor model. A simulation example, including a comparison to the Kalman filter method, has demonstrated the effectiveness of the proposed scheme.  相似文献   

9.
This study evaluates the safety effectiveness of multiple roadside elements on roadway segments by estimating crash modification factors (CMFs) using the cross-sectional method. To consider the nonlinearity in crash predictors, the study develops generalized nonlinear models (GNMs) and multivariate adaptive regression splines (MARS) models. The MARS is one of the promising data mining techniques due to its ability to consider the interaction impact of more than one variables and nonlinearity of predictors simultaneously. The CMFs were developed for four roadside elements (driveway density, poles density, distance to poles, and distance to trees) and combined safety effects of multiple treatments were interpreted by the interaction terms from the MARS models. Five years of crash data from 2008 to 2012 were collected for rural undivided four-lane roadways in Florida for different crash types and severity levels. The results show that the safety effects decrease as density of driveways and roadside poles increase. The estimated CMFs also indicate that increasing distance to roadside poles and trees reduces crashes. The study demonstrates that the GNMs show slightly better model fitness than negative binomial (NB) models. Moreover, the MARS models outperformed NB and GNM models due to its strength to reflect the nonlinearity of crash predictors and interaction impacts among variables under different ranges. Therefore, it can be recommended that the CMFs are estimated using MARS when there are nonlinear relationships between crash rate and roadway characteristics, and interaction impacts among multiple treatments.  相似文献   

10.
In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature.  相似文献   

11.
This research presents a modeling approach to investigate the association of the accident frequency during a snow storm event with road surface conditions, visibility and other influencing factors controlling for traffic exposure. The results have the premise to be applied for evaluating different maintenance strategies using safety as a performance measure. As part of this approach, this research introduces a road surface condition index as a surrogate measure of the commonly used friction measure to capture different road surface conditions. Data from various data sources, such as weather, road condition observations, traffic counts and accidents, are integrated and used to test three event-based models including the Negative Binomial model, the generalized NB model and the zero inflated NB model. These models are compared for their capability to explain differences in accident frequencies between individual snow storms. It was found that the generalized NB model best fits the data, and is most capable of capturing heterogeneity other than excess zeros. Among the main results, it was found that the road surface condition index was statistically significant influencing the accident occurrence. This research is the first showing the empirical relationship between safety and road surface conditions at a disaggregate level (event-based), making it feasible to quantify the safety benefits of alternative maintenance goals and methods.  相似文献   

12.
Investigation of road network features and safety performance   总被引:1,自引:0,他引:1  
The analysis of road network designs can provide useful information to transportation planners as they seek to improve the safety of road networks. The objectives of this study were to compare and define the effective road network indices and to analyze the relationship between road network structure and traffic safety at the level of the Traffic Analysis Zone (TAZ). One problem in comparing different road networks is establishing criteria that can be used to scale networks in terms of their structures. Based on data from Orange and Hillsborough Counties in Florida, road network structural properties within TAZs were scaled using 3 indices: Closeness Centrality, Betweenness Centrality, and Meshedness Coefficient. The Meshedness Coefficient performed best in capturing the structural features of the road network. Bayesian Conditional Autoregressive (CAR) models were developed to assess the safety of various network configurations as measured by total crashes, crashes on state roads, and crashes on local roads. The models’ results showed that crash frequencies on local roads were closely related to factors within the TAZs (e.g., zonal network structure, TAZ population), while crash frequencies on state roads were closely related to the road and traffic features of state roads. For the safety effects of different networks, the Grid type was associated with the highest frequency of crashes, followed by the Mixed type, the Loops & Lollipops type, and the Sparse type. This study shows that it is possible to develop a quantitative scale for structural properties of a road network, and to use that scale to calculate the relationships between network structural properties and safety.  相似文献   

13.
Understanding pedestrian crash causes and contributing factors in developing countries is critically important as they account for about 55% of all traffic crashes. Not surprisingly, considerable attention in the literature has been paid to road traffic crash prediction models and methodologies in developing countries of late. Despite this interest, there are significant challenges confronting safety managers in developing countries. For example, in spite of the prominence of pedestrian crashes occurring on two-way two-lane rural roads, it has proven difficult to develop pedestrian crash prediction models due to a lack of both traffic and pedestrian exposure data. This general lack of available data has further hampered identification of pedestrian crash causes and subsequent estimation of pedestrian safety performance functions. The challenges are similar across developing nations, where little is known about the relationship between pedestrian crashes, traffic flow, and road environment variables on rural two-way roads, and where unique predictor variables may be needed to capture the unique crash risk circumstances. This paper describes pedestrian crash safety performance functions for two-way two-lane rural roads in Ethiopia as a function of traffic flow, pedestrian flows, and road geometry characteristics. In particular, random parameter negative binomial model was used to investigate pedestrian crashes. The models and their interpretations make important contributions to road crash analysis and prevention in developing countries. They also assist in the identification of the contributing factors to pedestrian crashes, with the intent to identify potential design and operational improvements.  相似文献   

14.
Breast cancer is one of the deadly diseases in women that have raised the mortality rate of women. An accurate and early detection of breast cancer using mammogram images is still a complex task. Hence, this article proposes a novel breast cancer detection model, which included five major phases: (a) preprocessing, (b) segmentation, (c) feature extraction, (d) feature selection, and (e) classification. The input mammogram image is initially preprocessed using contrast limited adaptive histogram equalization (CLAHE) and median filtering. The preprocessed image is then subjected to segmentation via the region growing algorithm. Subsequently, geometric features, texture features and gradient features are extracted from the segmented image. Since the length of the feature vector is large, it is essential to select the optimal features. Here, the selection of optimal features is done by a hybrid optimization algorithm. Once the optimal features are selected, they are subjected to the classification process involving the neural network (NN) classifier. As a novelty, the weight of NN is selected optimally to enhance the accuracy of diagnosis (benign and malignant). The optimal feature selection as well as the weight optimization of NN is accomplished by merging the Lion algorithm (LA) and particle swarm optimization (PSO), named as velocity updated lion algorithm (VU‐LA). Finally, a performance‐based evaluation is carried out between VU‐LA and the existing models like, whale optimization algorithm (WOA), gray wolf optimization (GWO), firefly (FF), PSO, and LA.  相似文献   

15.
There has been a considerable amount of work devoted by transportation safety analysts to the development and application of new and innovative models for analyzing crash data. One important characteristic about crash data that has been documented in the literature is related to datasets that contained a large amount of zeros and a long or heavy tail (which creates highly dispersed data). For such datasets, the number of sites where no crash is observed is so large that traditional distributions and regression models, such as the Poisson and Poisson-gamma or negative binomial (NB) models cannot be used efficiently. To overcome this problem, the NB-Lindley (NB-L) distribution has recently been introduced for analyzing count data that are characterized by excess zeros. The objective of this paper is to document the application of a NB generalized linear model with Lindley mixed effects (NB-L GLM) for analyzing traffic crash data. The study objective was accomplished using simulated and observed datasets. The simulated dataset was used to show the general performance of the model. The model was then applied to two datasets based on observed data. One of the dataset was characterized by a large amount of zeros. The NB-L GLM was compared with the NB and zero-inflated models. Overall, the research study shows that the NB-L GLM not only offers superior performance over the NB and zero-inflated models when datasets are characterized by a large number of zeros and a long tail, but also when the crash dataset is highly dispersed.  相似文献   

16.
Much of the data collected on motor vehicle crashes is count data. The standard Poisson regression approach used to model this type of data does not take into account the fact there are few crash events and hence, many observed zeros. In this paper, we applied the zero-inflated Poisson (ZIP) model (which adjusts for the many observed zeros) and the negative binomial (NB) model to analyze young driver motor vehicle crashes. The results of the ZIP regression model are comparable to those from fitting a NB regression model for general over-dispersion. The findings highlight that driver confidence/adventurousness and the frequency of driving prior to licensing are significant predictors of crash outcome in the first 12 months of driving. We encourage researchers, when analyzing motor vehicle crash data, to consider the empirical frequency distribution first and to apply the ZIP and NB models in the presence of extra zeros due, for example, to under-reporting.  相似文献   

17.
An algorithm is proposed to identify a neural network model that represents a nonlinear dynamic system with a multivariate time delay response. The algorithm consists of two major parts. The first one identifies the time delay vector for a given neural network structure. This task is accomplished by using an exhaustive integer enumeration algorithm that minimizes a statistical parameter to assess the performance of the neural network model. The second part uses a cross-validation strategy to identify the best neural network model. Since the structure that models a nonlinear system is usually unknown, the identification strategy consists of selecting several neural network structures and identifying the best time delay vector for each network. The modeling process starts with the simplest structure and progressively the complexity of the network is increased to end up with a complex structure. Finally, the network that offers the simplest structure with the best network performance is the one that exhibits the appropriate neural network structure with the corresponding optimal time delay vector. The Monte Carlo simulation technique was used to test the performance of the algorithm under the presence of linear and nonlinear relationships among several variables of dynamic systems and with a different time delay applied to each input variable. The introduced algorithm is used to detect a chemical reaction delay among enriched amyl acetate, acetic acid, water, and the pH of erythromycin sail. An appropriate neural network model was designed to model the pH of the erythromycin during a continuous extraction process. To the best of the authors knowledge the proposed algorithm is the only one currently available to identify time delay interactions in the multivariate input output variables of a system. The major drawback of the introduced algorithm is that it becomes very slow as the number of system inputs increases. This algorithm works efficiently in a system that involves five inputs or less.  相似文献   

18.
Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model.A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well.  相似文献   

19.
A Neural Network (NN)-based Production Control System (PCS) for a Flexible Manufacturing Cell (FMC), operating in a highly random produce-to-order environment is presented. The proposed PCS chooses periodically, on the basis of the current state of the system, the most appropriate scheduling rule, out of several predetermined ones. The proposed PCS is based on multi-layer NNs, one for each competing scheduling rule, that predict the FMC's performance. The NNs are retrained periodically. The performance of the proposed NN-based PCS was tested by simulation of two different FMC configurations. The NN-based PCS has performed significantly better than a decision-tree-based PCS and a single-rule-based PCS.  相似文献   

20.
李朋伟  孟荻  陈倩 《声学技术》2020,39(6):676-681
水声通信网络节点功耗是影响网络节点寿命的重要因素之一。针对水声通信网络的能量优化问题,基于网络节点发射功率与传输距离的非线性关系,结合改进的粒子群算法建立了一种能量优化方法。该方法改进了网络模型,在网络运行中根据存活节点数量和节点剩余能量的变化情况,自适应动态优化每个节点的信息传输路径。仿真结果表明,所提优化方法能有效降低网络节点总功耗,延缓首个节点的死亡,减缓网络中节点的死亡速率,也即减缓了网络有效覆盖面积随着网络运行而减小的速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号