首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
固体氧化物燃料电池(SOFCs)是一类可以将燃料气体的化学能以高效而环境友好的方式直接转化为电能的电化学反应器。最近的研究趋势是发展可以直接电化学氧化碳氢化合物燃料(如天然气)的电池,但是使用碳氢化合物作为燃料时,目前最常使用的镍-氧化钇稳定的氧化锆(Ni/YSZ)金属陶瓷阳极材料具有易积碳和硫中毒的缺点。因此,研究在燃料气氛下具有混合离子-电子电导的替代阳极材料显得尤为必要。综述了以碳基燃料工作的SOFCs阳极材料研究的一些进展,并展望本领域在未来的发展趋势。  相似文献   

2.
如今,世界能源与环境问题日益严峻,其中煤炭、石油等化石燃料的粗放利用是一个很重要的原因,开发一种高效、清洁的煤炭利用技术已经迫在眉睫。直接碳固体氧化物燃料电池(Direct carbon solid oxide fuel cell,DC-SOFC)作为全固态的能量转换装置,可以直接采用固体碳作为燃料,将化学能直接转化为电能,理论上其能量转化效率接近100%。这种全固态的结构可以有效地避免液态金属阳极DCFC和复合电解质型DCFC电解液泄漏、腐蚀和由空气中的二氧化碳引起的电池性能衰减等问题。随着SOFC电池技术的迅速发展,DC-SOFC技术受到了越来越多研究者的关注,并有望成为新一代清洁能源技术。然而,由于采用固体电解质和固体碳燃料,DC-SOFC阳极反应过程复杂且影响因素众多,不同的阳极材料在性能上有着不同的表现。对此,国内外研究者为解释其阳极反应机理做了大量的工作,且不断尝试将各种新型材料用作DC-SOFC的阳极,并取得了一定的成果,对其阳极反应机理做出了合理的推断,在充分发挥DC-SOFC安全性和稳定性的同时大幅提升了其输出性能。目前,对于DC-SOFC的阳极机理,根据电池中碳燃料引入形式的不同,产生了两种不同的理论,且均有合理的实验数据支撑。而已经报道的DC-SOFC阳极材料除了最早的贵金属Pt阳极材料以外,主要有以Ni-YSZ为代表的Ni基复合金属陶瓷阳极材料、以Cu-Ni-YSZ为代表的Cu基复合金属陶瓷阳极材料、以Ag-GDC为代表的Ag基复合金属陶瓷阳极材料及以LST或LSCT为代表的混合离子和电子导体阳极材料(MIECs)。大量研究表明,在金属陶瓷阳极中加入Fe、Sn等具有催化功能的元素能有效增加电池的输出功率,提高燃料的利用效率。这些材料虽然在输出性能上表现不一,但是均存在各自的优势,为DC-SOFC的研究提供了不同的思路。此外,以现有材料为基础,对阳极结构进行优化,进一步提升电池的输出性能,也为未来的阳极材料研究提供了新的方向。本文系统地总结并分析了DC-SOFC阳极结构特性、反应机理以及各类不同阳极材料的最新研究进展,展望了直接碳固体氧化物燃料电池阳极材料的未来发展方向,以期为DC-SOFC阳极材料的高效研究提供有价值的参考。  相似文献   

3.
中温固体氧化物燃料电池材料的研究进展   总被引:2,自引:0,他引:2  
中温化是固体氧化物燃料电池的发展趋势之一.阳极材料、阴极材料、固体电解质材料和连接材料的性能对整个固体氧化物燃料电池的性能有着十分重要的影响.综述了中温固体氧化物燃料电池各组件对材料的要求及其研究现状,并提出了中温固体氧化物燃料电池在其材料方面的一些有待解决的问题.  相似文献   

4.
金属支撑固体氧化物燃料电池(MS-SOFC)是一种不同于传统金属陶瓷阳极支撑的新型燃料电池。MS-SOFC以高热导率的不锈钢金属材料作为支撑体,具有成本低廉、结构强度高、启动速度快、抗热震性能好等优点。然而,金属与陶瓷材料在物理和化学性能上具有截然不同的特性,将金属引入到SOFC中作为支撑体,在材料选择、电池制备工艺和燃料气体种类等方面面临很多新的问题。近年来关于MS-SOFC的研究,除了金属支撑体的材料和成型工艺外,研究者们主要尝试利用各种先进的薄膜沉积技术制备MS-SOFC的阳极、电解质和阴极,并根据多孔电极和致密电解质的不同微观结构需求,不断优化MS-SOFC制备工艺。为了实现在MS-SOFC中直接使用CH_4基燃料,研究者将纳米催化剂颗粒包覆在金属支撑体的多孔网络骨架表面,从而实现阳极在重整性和抗积碳性的双重优化。此外,通过在金属支撑体外层增加高催化活性的重整层,也可以实现碳氢燃料的原位重整,提高MS-SOFC在CH_4基燃料中的稳定性能。本文讨论了MS-SOFC的发展现状,系统总结了SOFC金属支撑体材料的研究现状,分析了MS-SOFC制备过程中的关键问题。在此基础上,特别关注了直接应用CH_4作为燃料的Ni-Fe合金支撑SOFC,分析了Ni-Fe合金支撑体的结构特性,提出增强Ni-Fe合金支撑体催化活性的措施,探讨了直接CH_4固体氧化物燃料电池金属支撑体未来的发展方向。  相似文献   

5.
本研究借助第一性原理总能量计算法, 针对可能用于固体氧化物燃料电池阳极材料的3~6周期金属元素及其氧化物, 进行了稳定性、电学性能及力学性能等方面的研究。对工作条件下(高温、还原性气氛)阳极的结构形态、综合性能等的演化情况进行了研究分析, 得到了金属/氧化物体系体模量、禁带宽度的变化趋势, 及其与稳定性的关系。结果显示, 位于生成趋势图中部区域的金属/氧化物稳定性适中, 易于发生氧化/还原反应, 可能是阳极工作条件下综合性能较优的原因, 其中靠近金属区的元素更能为体系提供电子电导和催化活性, 靠近氧化物区的元素更能为体系提供氧离子并增加稳定性, 这些结果为不同条件下的阳极选择提供了理论指导。  相似文献   

6.
采用低成本高效率的湿陶瓷粉末法结合共烧结法成功制备了阳极支撑型固体氧化物燃料电池.对多孔阳极支撑体的还原特性、电解质膜的微观结构以及电池的电化学性能等进行了分析和讨论.电池以氢气(含3%H2O)为燃料在800、750、700、650和600℃时的最大功率密度分别为1.11、0.6、0.34、0.18和0.09W/cm2.以甲烷(含3%H2O)为燃料,800、750、700、650和600℃对应的最大输出功率密度分别为0.62、0.40、0.25、0.14和0.05W/cm2.阻抗谱测试结果表明,电极极化是制约电池输出性能的主要因素.  相似文献   

7.
H2S源铈基固体氧化物燃料电池电化学性能研究   总被引:1,自引:0,他引:1  
谭文轶  钟秦 《功能材料》2005,36(9):1383-1385,1388
采用甘氨酸-硝酸盐燃烧法制备出(CeO2)1-2x(Sm2O3)x固体电解质(简记作SDC)薄膜,以Ni-SDC、Ag分别作为固体氧化物燃料电池阳、阴极。在中温(650~750℃)条件下,该燃料电池对含H2S有害气体的脱除率最高可达到45%。在电流密度-电压(电功率密度)特性曲线中,当Sm:Ce=2:8时,作为氢源的H2S气体可使电池的开路电压为0.59V,电功率密度最高达到6.2mW/cm^2。Ni-SDC可作为H2S-O2此类燃料电池的阳极替代材料。  相似文献   

8.
《纳米科技》2012,(4):37-37
哈佛大学材料科学家通过采用低温运行和使用纳米结构氧化钒作为阳极材料,研发出一种新型固体氧化物燃料电池(SOFC),既可发电,也可以存储电化学能量,即使氢燃料耗尽仍可持续运行一段时间。研究人员认为,理论上这种氢燃料电池可用于小尺寸便携式设备,如无人机,  相似文献   

9.
吴晓燕  张军  左微  王静晖 《材料导报》2014,28(24):14-17,29
为研究在Ni-YSZ阳极添加银对固体氧化物燃料电池(SOFC)性能的影响,采用化学镀银法在电池阳极镀银,在750℃分别以氢气和甲烷为燃料气,测试电池的电化学性能,并用扫描电子显微镜对测试前后的阳极进行表征。结果表明,电池在阳极镀银后,极化电阻减小,放电性能和抗积碳能力提高。化学镀银法镀银10min的电池在750℃以氢气为燃料气时,最大功率密度为511.7 mW·cm-2,比未镀银电池增加31.8%,以甲烷为燃料气时,以200mA·cm-2恒流稳定运行24h后,有少量积碳,相比恒流前最大功率密度降低0.8%。  相似文献   

10.
固体氧化物燃料电池是一种全固态的能量转换装置,该电池通常采用陶瓷作组装材料,于600-1000℃的高温下操作。本文详细介绍了固体氧化物燃料电池各元件的材料,包括稳定化ZrO2电解质、Ni/稳定化ZrO2阳极、掺杂的LaMnO3阴极以及掺杂的LaCrO3双极分离器等。  相似文献   

11.
Rechargeable batteries are considered promising replacements for environmentally hazardous fossil fuel‐based energy technologies. High‐energy lithium‐metal batteries have received tremendous attention for use in portable electronic devices and electric vehicles. However, the low Coulombic efficiency, short life cycle, huge volume expansion, uncontrolled dendrite growth, and endless interfacial reactions of the metallic lithium anode are major obstacles in their commercialization. Extensive research efforts have been devoted to address these issues and significant progress has been made by tuning electrolyte chemistry, designing electrode frameworks, discovering nanotechnology‐based solutions, etc. This Review aims to provide a conceptual understanding of the current issues involved in using a lithium metal anode and to unveil its electrochemistry. The most recent advancements in lithium metal battery technology are outlined and suggestions for future research to develop a safe and stable lithium anode are presented.  相似文献   

12.
Research on sodium‐ion batteries (SIBs) has recently been revitalized due to the unique features of much lower costs and comparable energy/power density to lithium‐ion batteries (LIBs), which holds great potential for grid‐level energy storage systems. Transition metal dichalcogenides (TMDCs) are considered as promising anode candidates for SIBs with high theoretical capacity, while their intrinsic low electrical conductivity and large volume expansion upon Na+ intercalation raise the challenging issues of poor cycle stability and inferior rate performance. Herein, the designed formation of hybrid nanoboxes composed of carbon‐protected CoSe2 nanoparticles anchored on nitrogen‐doped carbon hollow skeletons (denoted as CoSe2@C∩NC) via a template‐assisted refluxing process followed by conventional selenization treatment is reported, which exhibits tremendously enhanced electrochemical performance when applied as the anode for SIBs. Specifically, it can deliver a high reversible specific capacity of 324 mAh g?1 at current density of 0.1 A g?1 after 200 cycles and exhibit outstanding high rate cycling stability at the rate of 5 A g?1 over 2000 cycles. This work provides a rational strategy for the design of advanced hybrid nanostructures as anode candidates for SIBs, which could push forward the development of high energy and low cost energy storage devices.  相似文献   

13.
碳负极材料是迄今为止综合性能最好的锂离子电池负极材料。通过对碳材料微观结构的设计,能够显著改善锂离子电池的能量密度、功率密度和循环寿命,适应新能源汽车对动力电池的要求。与传统石墨负极材料相比,硬碳具有嵌锂容量高、倍率性能好以及循环寿命长等优点。研究者通过改变碳源、优化制备工艺,相继制备了一系列结构独特性能优异的硬碳材料。基于硬碳基锂离子电池负极材料的最新研究进展,总结了以不同碳源制备硬碳材料的研究工作,并简要分析了硬碳的微观结构对材料嵌锂性能的影响。最后总结并指出了该领域亟待解决的问题以及未来的发展方向。  相似文献   

14.
Lithium‐metal batteries (LMBs), as one of the most promising next‐generation high‐energy‐density storage devices, are able to meet the rigid demands of new industries. However, the direct utilization of metallic lithium can induce harsh safety issues, inferior rate and cycle performance, or anode pulverization inside the cells. These drawbacks severely hinder the commercialization of LMBs. Here, an up‐to‐date review of the behavior of lithium ions upon deposition/dissolution, and the failure mechanisms of lithium‐metal anodes is presented. It has been shown that the primary causes consist of the growth of lithium dendrites due to large polarization and a strong electric field at the vicinity of the anode, the hyperactivity of metallic lithium, and hostless infinite volume changes upon cycling. The recent advances in liquid organic electrolyte (LOE) systems through modulating the local current density, anion depletion, lithium flux, the anode–electrolyte interface, or the mechanical strength of the interlayers are highlighted. Concrete strategies including tailoring the anode structures, optimizing the electrolytes, building artificial anode–electrolyte interfaces, and functionalizing the protective interlayers are summarized in detail. Furthermore, the challenges remaining in LOE systems are outlined, and the future perspectives of introducing solid‐state electrolytes to radically address safety issues are presented.  相似文献   

15.
梁杰铬  罗政  闫钰  袁斌 《材料导报》2018,32(11):1779-1786
在全球能源与环境问题日趋紧迫的大背景下,可再生能源的获取与利用途径及高效安全的储能技术的研发一直是工业界和科学界关注的热点之一。锂离子二次电池作为能量存储器件,拥有高比能量、长循环寿命等优点,近十几年来其研究取得了长足进展,并在各类便携式电子设备和电动交通工具中获得了广泛应用。然而,随着各种高性能设备的不断涌现,商业化的锂离子电池越来越难以满足其在能量密度、循环稳定性和安全性等方面的要求。为了进一步提高锂离子电池的能量密度,需要开发出高比容量的负极材料(硅、锡和锂等)以取代传统石墨负极。硅、锡等新式负极材料通过与锂离子反应形成含锂化合物的原理来存储与释放锂离子,完成电池的一个充放电过程。这个过程往往伴随着负极材料体积的剧烈变化,经历较长时间循环使用后会导致负极材料的粉化甚至从集流体上剥离,引起电池容量迅速衰减甚至失效。而锂负极通过锂在负极上的溶解和沉积来完成电池的充放电过程,该过程不存在反应相变所导致的体积变化。另外,锂金属负极材料具有极高的质量比容量(3 860mAh/g)、低密度(0.59g/cm3)和低的还原电位(-3.04V,相比于氢标准电极),被认为是一种理想的可充电电池负极材料。然而,锂的枝晶生长、锂金属电池低的库伦效率和锂的无主体沉积引起的体积膨胀等一些关键问题长期以来制约着锂负极的商业应用。锂的每次沉积都会产生枝晶,在充放电循环中,锂枝晶会导致电池内部短路甚至发生爆炸,带来严重的安全问题。除此之外,锂枝晶还会增加负极表面积,新暴露的锂金属会与电解液反应生成固态电解质膜(Solid electrolyte interface,SEI),这会损耗活性材料以及降低电池的库伦效率。为了解决以上问题,研究者们对锂金属电极进行了许多探索,尤其是在锂枝晶生长的机理及其抑制方法方面。一些理论模型如扩散模型、SEI保护模型、电荷诱导生长模型和薄膜生长模型等,以及与这些模型相对应的一些抑制方法如均匀锂离子流法、SEI膜保护法、稳定沉积主体法和静电屏蔽保护法等被提出。这些抑制方法能够在一定程度上缓解锂枝晶的生长问题,但都未能达到商业化应用的要求。本文总结了近几年研究人员针对锂离子电池锂金属负极的一些重要研究,系统地介绍了业内较为认同的枝晶生长模型和影响因素,并着重叙述了抑制枝晶生长的方法及成效,最后就锂金属负极将来的研究方向给出一些建议。  相似文献   

16.
17.
Rechargeable lithium‐ion batteries (LIBs), as one of the most important electrochemical energy‐storage devices, currently provide the dominant power source for a range of devices, including portable electronic devices and electric vehicles, due to their high energy and power densities. The interest in exploring new electrode materials for LIBs has been drastically increasing due to the surging demands for clean energy. However, the challenging issues essential to the development of electrode materials are their low lithium capacity, poor rate ability, and low cycling stability, which strongly limit their practical applications. Recent remarkable advances in material science and nanotechnology enable rational design of heterostructured nanomaterials with optimized composition and fine nanostructure, providing new opportunities for enhancing electrochemical performance. Here, the progress as to how to design new types of heterostructured anode materials for enhancing LIBs is reviewed, in the terms of capacity, rate ability, and cycling stability: i) carbon‐nanomaterials‐supported heterostructured anode materials; ii) conducting‐polymer‐coated electrode materials; iii) inorganic transition‐metal compounds with core@shell structures; and iv) combined strategies to novel heterostructures. By applying different strategies, nanoscale heterostructured anode materials with reduced size, large surfaces area, enhanced electronic conductivity, structural stability, and fast electron and ion transport, are explored for boosting LIBs in terms of high capacity, long cycling lifespan, and high rate durability. Finally, the challenges and perspectives of future materials design for high‐performance LIB anodes are considered. The strategies discussed here not only provide promising electrode materials for energy storage, but also offer opportunities in being extended for making a variety of novel heterostructured nanomaterials for practical renewable energy applications.  相似文献   

18.
Using lithium (Li) directly as metal anode for a higher energy density battery is one of the most attractive battery researches in the past decade. To address its intrinsic issues including uncontrolled growth of Li dendrites and unstable solid electrolyte interphase (SEI), which are believed as the main origins of safety issues and short lifetime, proposing the groundbreaking concepts and contributing valuable improvements in the development of Li metal anodes (LMAs) have always been the mandate of all battery scientists. This review presents a historical framework of various concepts and contributions in enabling LMAs to be applied practically. We begin with an overview of these important concepts and breakthroughs in different aspects to advance LMAs. Moreover, assisted by the big data sources from Web of Science, the major contributions from institutions, journals, corresponding authors, and highly cited papers are discussed and summarized. Finally, future trends and challenges are concluded for designing an ideal LMA. We hope that such as a comprehensive evolutionary story of LMAs can motivate more researchers to pave the way for high-energy lithium metal batteries (LMBs) in the future.  相似文献   

19.
为了降低固体氧化物燃料电池在制备和工作过程中产生的热应力, 提高电池的电化学性能, 在电池中引入功能梯度层可以有效减小电池各层之间材料参数的差异, 从而缓解各层之间的热失配应力。本研究将阳极功能层引入燃料电池中, 通过阳极功能层子层数目和非线性梯度成分指数n控制各子层材料属性的变化情况, 研究了燃料电池在800℃下的热应力分布。结果表明: 选取适当的指数n和阳极功能层的分层数目可以明显降低阳极层的最大拉应力和电解质层的最大压应力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号