首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three‐phase contact line (TCL) of DNA‐loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic–metal–semiconductor nanowires by growing ZnO nanocrystals onto the metal‐coated nanowires.  相似文献   

2.
“Bottom‐up” technologies are based upon the premise that organized systems – from the nano‐scale up to the macro‐scale – can be assembled spontaneously from basic building blocks in solution. We demonstrate a simple strategy for the generation of extremely long (up to several centi­meters), horizontally‐aligned gold micro‐wires, produced through a surfactant monolayer template deposited from gold thiocyanate [Au(SCN)4] aqueous solution. Specifically, we show that the surfactant, octyl‐maleimide (OM), spontaneously forms oriented micro‐wires at the air/water interface, which constitute a template for deposition of metallic gold through binding and crystallization of the soluble gold complex. The Au micro‐wires can be subsequently transferred onto solid substrates, and following plasma treatment and gold enhancement exhibit excellent conductivity even at electrode spacings of several centimeters. Importantly, the micro‐wire alignment determines the direction of electrical current, demonstrating that long‐range ordering of the micro‐wires can be accomplished, significantly affecting the physical properties of the system. The new approach is simple, robust, and can be readily exploited for bottom‐up fabrication of micro‐wire assemblies and transparent conductive electrodes.  相似文献   

3.
Molecular wires are essential components for future nanoscale electronics. However, the preparation of individual long conductive molecules is still a challenge. MMX metal–organic polymers are quasi‐1D sequences of single halide atoms (X) bridging subunits with two metal ions (MM) connected by organic ligands. They are excellent electrical conductors as bulk macroscopic crystals and as nanoribbons. However, according to theoretical calculations, the electrical conductance found in the experiments should be even higher. Here, a novel and simple drop‐casting procedure to isolate bundles of few to single MMX chains is demonstrated. Furthermore, an exponential dependence of the electrical resistance of one or two MMX chains as a function of their length that does not agree with predictions based on their theoretical band structure is reported. This dependence is attributed to strong Anderson localization originated by structural defects. Theoretical modeling confirms that the current is limited by structural defects, mainly vacancies of iodine atoms, through which the current is constrained to flow. Nevertheless, measurable electrical transport along distances beyond 250 nm surpasses that of all other molecular wires reported so far. This work places in perspective the role of defects in 1D wires and their importance for molecular electronics.  相似文献   

4.
The quest for a suitable molecule to pave the way to molecular nanoelectronics has been met with obstacles for over a decade. Candidate molecules such as carbon nanotubes lack the appealing trait of self‐assembly, while DNA seems to lack the desirable feature of conductivity. Silver‐containing poly(dG)–poly(dC) DNA (E‐DNA) molecules have recently been reported as promising candidates for molecular electronics, owing to the selectivity of their metallization, their thin and uniform structure, their resistance to deformation, and their maximum possible high conductivity. Ultrahigh vacuum (UHV) scanning tunneling microscopy (STM) of E‐DNA presents an elaborate high‐resolution morphology characterization of these unique molecules, along with a detailed depiction of their electronic level structure. The energy levels found for E‐DNA indicate a novel truly hybrid metal–molecule structure, potentially more conductive than other DNA‐based alternatives.  相似文献   

5.
Shown here is the site‐specific formation of single extraordinarily long metal–organic micro‐ and nanowires using a microfluidic device made of poly(dimethylsiloxane) (PDMS). This approach exploits two concepts, i) the diffusion of organic precursor molecules through PDMS and ii) the use of microfluidic channels as a growth template. To initiate wire formation, metal and organic precursor solutions are filled into different supply channels that are separated by PDMS. As the precursor diffuses through PDMS, and thereby infiltrates the adjacent channel, the growth of micro‐ and nanowires starts at the side walls of this adjacent channel. The formation yields single wires with sizes ranging from several hundreds of micrometers to millimeters at diameters of 0.5–2 µm. The principles of this formation pathway are demonstrated with the reaction of tetrathiafulvalene (TTF) and gold(III) ions that yields Au‐TTF wires. The influence of various reaction parameters including the choice of solvents and the chip fabrication protocol on the reaction are evaluated. Based on these findings, a further microfluidic device design with orthogonally arranged channels is developed, and the formation of single wires in a channel‐defined pattern is demonstrated. Moreover, the possibility of pulsed precursor supply allows for advanced control over the growth of the wires.  相似文献   

6.
The synthesis of conductive nanowires or patterned conductive nanoelements is a challenging goal for the future fabrication of nanoscale circuitry. Similarly, the realization of nanoscale mechanics might introduce a new facet to the area of nanobiotechnology. Here we report on the design of conductive and patterned actin-based gold nanowires, and on the ATP-driven motility of the nano-objects. The polymerization of G-actin labelled with Au nanoparticles, followed by the catalytic enlargement of the nanoparticles, yields gold wires (1-4 microm long and 80-200 nm high) exhibiting high electrical conductivity. The polymerization of the Au nanoparticle/G-actin monomer followed by the polymerization of free G-actin, or alternatively the polymerization of the Au-nanoparticle-labelled G-actin on polymerized F-actin followed by the catalytic enlargement of the particles, yields patterned actin-Au wire-actin or Au wire-actin-Au wire nanostructures, respectively. We demonstrate the ATP-fuelled motility of the actin-Au wire-actin filaments on a myosin interface. These actin-based metallic wires and their nanotransporting funcionality introduce new concepts for developing biological/inorganic hybrid devices.  相似文献   

7.
3D crystals assembled entirely from DNA provide a route to design materials on a molecular level and to arrange guest particles in predefined lattices. This requires design schemes that provide high rigidity and sufficiently large open guest space. A DNA‐origami‐based “tensegrity triangle” structure that assembles into a 3D rhombohedral crystalline lattice with an open structure in which 90% of the volume is empty space is presented here. Site‐specific placement of gold nanoparticles within the lattice demonstrates that these crystals are spacious enough to efficiently host 20 nm particles in a cavity size of 1.83 × 105 nm3, which would also suffice to accommodate ribosome‐sized macromolecules. The accurate assembly of the DNA origami lattice itself, as well as the precise incorporation of gold particles, is validated by electron microscopy and small‐angle X‐ray scattering experiments. The results show that it is possible to create DNA building blocks that assemble into lattices with customized geometry. Site‐specific hosting of nano objects in the optically transparent DNA lattice sets the stage for metamaterial and structural biology applications.  相似文献   

8.
High critical current densities (Jc) in thick films of the Y1Ba2Cu3O7–δ (YBCO, Tc ≈ 92 K) superconductor directly depend upon the types of nanoscale defects and their densities within the films. A major challenge for developing a viable wire technology is to introduce nanoscale defect structures into the YBCO grains of the thick film suitable for flux pinning and the tailoring of the superconducting properties to specific, application‐dependent, temperature and magnetic field conditions. Concurrently, the YBCO film needs to be integrated into a macroscopically defect‐free conductor in which the grain‐to‐grain connectivity maintains levels of inter‐grain Jc that are comparable to the intra‐grain Jc. That is, high critical current (Ic) YBCO coated conductors must contain engineered inhomogeneities on the nanoscale, while being homogeneous on the macroscale. An analysis is presented of the advances in high‐performance YBCO coated‐conductors using chemical solution deposition (CSD) based on metal trifluoroacetates and the subsequent processing to nano‐engineer the microstructure for tuneable superconducting wires. Multi‐scale structural, chemical, and electrical investigations of the CSD film processes, thick film development, key microstructural features, and wire properties are presented. Prospects for further development of much higher Ic wires for large‐scale, commercial application are discussed within the context of these recent advances.  相似文献   

9.
Tricia Carmichael and co‐workers employ a simple, low‐cost method for the fabrication of patterned metal films on elastomeric poly(dimethylsiloxane) (PDMS) substrates, as described on p. 59. The metal/PDMS composites are electrically conductive and mechanically flexible, making them suitable for use in the fabrication of lightweight, flexible devices such as wearable electronics, biocompatible sensors, and artificial nerves, skins, and muscles. Copper wires on PDMS remain conductive when subjected to linear strains of up to 52 %. The utility of these wires is demonstrated by using them as laminated top contacts in an organic light‐emitting device.  相似文献   

10.
In this contribution, a novel method for practical uses in the fabrication of the top contact electrode in a metal/organic monolayer/metal device is presented. The procedure involves the thermally induced decomposition of an organometallic compound, abbreviated as the TIDOC method. Monolayers incorporating the metal organic compounds (MOCs) [[4‐{(4‐carboxy)ethynyl}phenyl]ethynyl]‐(triphenylphosphine)‐gold, 1, or [1‐isocyano‐4‐methoxybenzene]‐[4‐amino‐phenylethynyl]‐gold, 2, were annealed at moderate temperatures (1: 150 °C for 2h and 2: 100 °C for 2 h), resulting in cleavage of the Au‐P or Au‐C bond and reduction of Au(I) to Au(0) as metallic gold nanoparticles (GNPs). These particles are distributed on the surface of the film resulting in formation of metal/molecule/GNP sandwich structures. Electrical properties of these nascent devices were determined by recording I–V curves with a conductive‐AFM. The I–V curves collected from these metal/organic monolayer/GNPs sandwich structures are typical of metal‐molecule‐metal junctions, with no low resistance traces characteristic of metallic short circuits observed over a wide range of set‐point forces. The TIDOC method is therefore an effective procedure for the fabrication of molecular junctions for the emerging area of molecular electronics.  相似文献   

11.
Electrical percolating composites of polypropylene (PP) filled with five different graphene nanoplatelet (GNP) fillers and their hybrid systems were prepared using melt blending. The effect of GNP size and their hybrid system on the conductive network formation is investigated. The formation of a conductive network can be affected by the structure and morphology of GNPs of different sizes. The GNPs with a larger diameter and smaller thickness are beneficial to produce a conductive network. The conductivity of the PP/GNP composite depends on the aspect ratio of the GNPs when the content exceeds the percolation threshold. However, when the GNP content is near the percolation threshold, both diameter and dispersion of the GNPs can affect the conductivity significantly, and electron tunneling theory should be taken in account. The highest electrical conductivity was obtained for a PP/large-diameter GNPs/medium-diameter GNPs hybrid system. To explain the hybrid system, an “island-bridge”-structured conductive network is proposed. The better conducting network may be due to scattered “islands” that connect with each other via a long “bridge.” This bridge links the islands for better charge transport across the GNPs and the obstruction of PP matrix, which enables the formation of a better conducting network. Even though GNPs with small diameter show perfect dispersion, they contribute less to the formation of a conductive network.  相似文献   

12.
The key bottlenecks hindering the practical implementations of lithium‐metal anodes in high‐energy‐density rechargeable batteries are the uncontrolled dendrite growth and infinite volume changes during charging and discharging, which lead to short lifespan and catastrophic safety hazards. In principle, these problems can be mitigated or even solved by loading lithium into a high‐surface‐area, conductive, and lithiophilic porous scaffold. However, a suitable material that can synchronously host a large loading amount of lithium and endure a large current density has not been achieved. Here, a lithiophilic 3D nanoporous nitrogen‐doped graphene as the sought‐after scaffold material for lithium anodes is reported. The high surface area, large porosity, and high conductivity of the nanoporous graphene concede not only dendrite‐free stripping/plating but also abundant open space accommodating volume fluctuations of lithium. This ingenious scaffold endows the lithium composite anode with a long‐term cycling stability and ultrahigh rate capability, significantly improving the charge storage performance of high‐energy‐density rechargeable lithium batteries.  相似文献   

13.
Reduction of graphene oxide (GO) is a promising low-cost synthetic approach to bulk graphene, which offers an accessible route to transparent conducting films and flexible electronics. Unfortunately, the release of oxygen-containing functional groups inevitably leaves behind vacancies and topological defects on the reduced GO sheet, and its low electrical conductivity hinders the development of practical applications. Here, we present a strategy for real-time repair of the newborn vacancies with carbon radicals produced by thermal decomposition of a suitable precursor. The sheet conductivity of thus-obtained single-layer graphene was raised more than six-fold to 350–410 S/cm (whilst retaining >96% transparency). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy revealed that the conductivity enhancement can be attributed to the formation of additional sp2-C structures. This method provides a simple and efficient process for obtaining highly conductive transparent graphene films.  相似文献   

14.
DNA strands have been used as templates for the self-assembly of smooth and conductive cuprous oxide (Cu?O) nanowires of diameter 12-23 nm and whose length is determined by the template (16 μm for λ-DNA). A combination of spectroscopic, diffraction and probe microscopy techniques showed that these nanowires comprise single crystallites of Cu?O bound to the DNA molecules which fused together over time in a process analogous to Ostwald ripening, but driven by the free energy of interaction with the template as well as the surface tension. Electrical characterization of the nanowires by a non-contact method, scanned conductance microscopy and by contact mode conductive AFM showed the wires are electrically conductive. The conductivity estimated from the AFM cross section and the zero-bias conductance in conductive AFM experiments was 2.2-3.3 S cm?1. These Cu?O nanowires are amongst the thinnest reported and show evidence of strong quantum confinement in electronic spectra.  相似文献   

15.
IR-sintering of ink-jet printed metal-nanoparticles on paper   总被引:1,自引:0,他引:1  
Sintering of printed metal nanoparticles can be made not only by conventional heating, but also by, e.g., electrical, microwave, plasma, laser and flash lamp annealing. We demonstrate sintering by using low-cost incandescent lamps as an effective way of obtaining highly conductive contacts of two types of ink-jet printed metal-nanoparticle inks on paper; both alkanethiol protected gold nanoparticles and a commercially available silver nanoparticle ink. This low-cost roll-to-roll compatible sintering process is especially suitable on paper substrates because of the high diffuse reflectance, relatively high thermal stability and low thermal conductivity of paper. A volume resistivity of around 10 μΩ cm was achieved of the inkjetted silver nanoparticles within 15 s of exposure to an IR lamp, which corresponds to a conductivity of 10-20% of that of bulk silver. Too long exposure time and too high intensity, however, lead to darkening of the paper fibers. Both the crack formation and the coffee ring effect of the inkjet printed gold nanoparticles were, furthermore, found to be reduced on paper as compared to glass or plastic substrates.  相似文献   

16.
Bottom‐up fabrication of self‐assembled structures made of nanoparticles may lead to new materials, arrays and devices with great promise for myriad applications. Here a new class of metal–peptide scaffolds is reported: coordination polymer Ag(I)‐DLL belt‐like crystals, which enable the dual‐template synthesis of more sophisticated nanoparticle superstructures. In these biorelated scaffolds, the self‐assembly and recognition capacities of peptides and the selective reduction of Ag(I) ions to Ag are simultaneously exploited to control the growth and assembly of inorganic nanoparticles: first on their surfaces, and then inside the structures themselves. The templated internal Ag nanoparticles are well confined and closely packed, conditions that favour electrical conductivity in the superstructures. It is anticipated that these Ag(I)‐DLL belts could be applied to create long (>100 μm) conductive Ag@Ag nanoparticle superstructures and polymetallic, multifunctional Fe3O4@Ag nanoparticle composites that marry the magnetic and conductive properties of the two nanoparticle types.  相似文献   

17.
2D transition metal carbides and nitrides, named MXenes, are attracting increasing attentions and showing competitive performance in energy storage devices including electrochemical capacitors, lithium‐ and sodium‐ion batteries, and lithium–sulfur batteries. However, similar to other 2D materials, MXene nanosheets are inclined to stack together, limiting the device performance. In order to fully utilize MXenes' electrochemical energy storage capability, here, processing of 2D MXene flakes into hollow spheres and 3D architectures via a template method is reported. The MXene hollow spheres are stable and can be easily dispersed in solvents such as water and ethanol, demonstrating their potential applications in environmental and biomedical fields as well. The 3D macroporous MXene films are free‐standing, flexible, and highly conductive due to good contacts between spheres and metallic conductivity of MXenes. When used as anodes for sodium‐ion storage, these 3D MXene films exhibit much improved performances compared to multilayer MXenes and MXene/carbon nanotube hybrid architectures in terms of capacity, rate capability, and cycling stability. This work demonstrates the importance of MXene electrode architecture on the electrochemical performance and can guide future work on designing high‐performance MXene‐based materials for energy storage, catalysis, environmental, and biomedical applications.  相似文献   

18.
The Watson–Crick base‐pairing with specificity and predictability makes DNA molecules suitable for building versatile nanoscale structures and devices, and the DNA origami method enables researchers to incorporate more complexities into DNA‐based devices. Thermally controlled atomic force microscopy in combination with nanomechanical spectroscopy with forces controlled in the pico Newton (pN) range as a novel technique is introduced to directly investigate the kinetics of multistrand DNA hybridization events on DNA origami nanopores under defined isothermal conditions. For the synthesis of DNA nanostructures under isothermal conditions at 60 °C, a higher hybridization rate, fewer defects, and a higher stability are achieved compared to room‐temperature studies. By quantifying the assembly times for filling pores in origami structures at several constant temperatures, the fill factors show a consistent exponential increase over time. Furthermore, the local hybridization rate can be accelerated by adding a higher concentration of the staples. The new insight gained on the kinetics of staple‐scaffold hybridization on the synthesis of two dimensional DNA origami structures may open up new routes and ideas for designing DNA assembly systems with increased potential for their application.  相似文献   

19.
Highly conductive molecular wires are an important component for realizing molecular electronic devices and have to be explored in terms of interactions between molecules and electrodes in their molecular junctions. Here, new molecular wire junctions are reported to enhance charge transport through gold nanoparticle (AuNP)‐linked double self‐assembled monolayers (SAMs) of cobalt (II) bis‐terpyridine molecules (e.g., Co(II)(tpyphS)2). Electrical characteristics of the double‐SAM devices are explored in terms of the existence of AuNP. The AuNP linker in the Co(II)(tpyphS)2–AuNP–Co(II)(tpyphS)2 junction acts as an electronic contact that is transparent to electrons. The weak temperature dependency of the AuNP‐linked molecular junctions strongly indicates sequential tunneling conduction through the highest occupied molecular orbitals (HOMOs) of Co(II)(tpyphS)2 molecules. The electrochemical characteristics of the AuNP–Co(II)(tpyphS)2 SAMs reveal fast electron transfer through molecules linked by AuNP. Density functional theory calculations reveal that the molecular HOMO levels are dominantly affected by the formation of junctions. The intermolecular charge transport, controlled by the AuNP linker, can provide a rational design for molecular connection that achieves a reliable electrical connectivity of molecular electronic components for construction of molecular electronic circuits.  相似文献   

20.
《材料科学技术学报》2019,35(9):1989-1995
In order to fabricate highly-conductive glass fibers using graphene as multi-functional coatings, we reported the preparation of graphene-coated glass fibers with high electrical conductivity through sol-gel and dip-coating technique in a simple way. Graphene oxide (GO) was partially reduced to graphene hydrosol, and then glass fibers were dipped and coated with the reduced GO (rGO). After repeated sol-gel and dip-coating treatment, the glass fibers were fully covered with rGO coatings, and consequently exhibited increased hydrophobicity and high electrical conductivity. The graphene-coated fibers exhibited good electrical conductivity of 24.9 S/cm, being higher than that of other nanocarbon-coated fibers and commercial carbon fibers, which is mainly attributed to the high intrinsic electrical conductivity of rGO and full coverage of fiber surfaces. The wettability and electrical conductivity of the coated fibers strongly depended on the dip-coating times and coating thickness, which is closely associated with coverage degree and compact structure of the graphene coatings. By virtue of high conductivity and easy operation, the graphene-coated glass fibers have great potential to be used as flexible conductive wires, highly-sensitive sensors, and multi-functional fibers in many fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号