首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of fabrication parameters on ZnO film properties has been analyzed through conducting several experiment processes to develop an appropriate deposition condition for obtaining highly c-axis textured films. A transducer with the structure of Al/ZnO/Al/Si was fabricated at low deposition rate and under a temperature of 380 °C in a mixture of gases Ar:O2 = 1:3, and RF power of 178 W. Pt/Ti was employed as the bottom electrode of the transducer fabricated in a suitable substrate temperature, which starts increasing at 380 °C with an increment of 20 °C for each 2 h stage of the deposition. Highly c-axis textured ZnO films have been successfully deposited on Pt/Ti/SiO2/Si substrate under feasible conditions, including RF power of 178 W, substrate temperature of 380 °C, deposition pressure of 1.3 Pa and Ar:O2 gas flow ratio of 50%. These conditions have been proposed and confirmed through investigating the influences of the sputtering parameters, such as substrate temperature, RF power and Ar:O2 gas flow ratio, on the properties of ZnO films.  相似文献   

2.
Undoped ZnO thin films were successfully deposited on Si substrates by RF magnetron sputtering with different substrate temperatures. The dependence was systematically investigated the structural, morphology, chemical state and optical properties of ZnO thin films. Crystal quality, growth orientation and optical properties of ZnO thin films were improved at proper substrate temperature (450 °C) whereas were deteriorated at higher temperature (600 °C). X-ray photoelectron spectroscopy showed that proper substrate temperature promoted the formation of Zn–O bonding, resulting in an improvement of film quality, while higher temperature decreased the formation of the Zn–O bonding and increased the oxygen vacancy due to formation of an amorphous SiO2 layer at the interface of ZnO and Si, resulting in a degradation of film quality. Moreover, the amorphous SiO2 layer is formed by oxygen related to the Zn–O bonding, mainly. Therefore, the experimental results indicate that the substrate temperature plays an important role in the deposition of ZnO film on Si substrate and needs to be carefully selected to suppress a formation of an amorphous SiO2 layer.  相似文献   

3.
Diamond-like carbon (DLC) film is a promising candidate for surface acoustic wave (SAW) device applications because of its higher acoustic velocity. A zinc oxide (ZnO) thin film has been deposited on DLC film/Si substrate by RF magnetron sputtering; the optimized parameters for the ZnO sputtering are RF power density of 0.55 W/cm2, substrate temperature of 380 °C, gas flow ratio (Ar/O2) of 5/1 and total sputter pressure of 1.33 Pa. The results showed that when the thickness of the ZnO thin films was decreased, the phase velocity of the SAW devices increased significantly.  相似文献   

4.
《Materials Letters》2005,59(14-15):1741-1744
Ba0.5Sr0.5TiO3 (BST) thin films have been deposited by r.f. magnetron sputtering on silicon and platinum-coated silicon substrates with different buffer and barrier layers. BST films deposited on Si/SiO2/SiN/Pt and Si/SiO2/Ti/TiN/Pt multilayer bottom electrode have been used for the fabrication of capacitors. XRD and SEM studies were carried out for the films. It was found that the crystallinity of the BST thin film was dependent upon oxygen partial pressure in the sputtering gas. The role of multilayered bottom electrode on the electrical properties of Ba0.5Sr0.5TiO3 films has been also investigated. The dielectric properties of BST films were measured. The results show that the films exhibit pure perovskite phase and their grain sizes are about 80–90 nm. The dielectric properties of the BST thin film on Si/SiO2/Ti/TiN/Pt electrode was superior to that of the film grown on Si/SiO2/SiN/Pt electrode.  相似文献   

5.
The preparation processes of epitaxially grown YSZ (Yttrium stabilized ZrO2) buffer layers on silicon (100) wafers were investigated. The “etching” procedure, at which the thin (∼5 nm) SiO2 native amorphous layer from the Si surface was reduced to volatile SiO by deposition of a few nm thick Zr layer and subsequent annealing at low pressure, was monitored by mass spectrometer. The subsequent YSZ layer was deposited by evaporation or RF sputtering technique and examined by XRD and TEM observations. The results show that the epitaxy of YSZ layer is strongly influenced by efficiency of amorphous SiO2 reduction at Si surface.  相似文献   

6.
Y.C. Lin  H.A. Chuang  J.H. Shen 《Vacuum》2009,83(6):921-192
Pulsed DC magnetron sputtering was used in this study to prepare lead zirconate titanate (Pb(ZrxTi1−x)O3, PZT) thin films. A single metallic target was used for the deposition onto a Pt/Ti/SiO2/Si substrate and parameters such as: pulse frequency, duty cycle, O2/Ar flow ratio controlled so as to analyze the effect of the parameters on thin film deposition rate, crystalline structure and morphology. After the deposition, the thin film was annealed in a rapid thermal annealing (RTA) furnace. The experimental results showed that, when the pulse frequency was in the range of 10 kHz-100 kHz, along with the lowering of frequency and the oxygen argon flow rate ratio, the deposition rate gradually increased and the formation of PZT thin film perovskite phase was enhanced; however, if the oxygen argon flow rate ratio was too high, it caused the PZT thin film to generate a pyrochlore phase. However, when the duty cycle was in the range of 95%-75%, the highest deposition rate and better perovskite phase could be obtained in the range of 75%-80%.  相似文献   

7.
The structural properties of a potassium lithium niobate (KLN; K3Li2Nb5O15) thin film deposited by rf-magnetron sputtering on a Pt/Ti/SiO2/Si(100) substrate were investigated. The crystalline structures of the Pt under layer and KLN thin films were examined using θ-2θ, θ-rocking, and mesh scan X-ray diffraction (XRD). The XRD results revealed that the Pt under layer was a strong (111) direction orientated poly crystal. Unlike the Pt under layer film, the KLN(001) peak was found to consist of two separate peaks, one with a broad full width half maximum (FWHM) and the other with a narrow FWHM, indicating that the KLN film had a single crystalline structure. The surface and cross-section morphology were investigated using a scanning electron microscope (SEM). Accordingly, from the results of the SEM and XRD experiments, it was concluded that the KLN film was composed of small single crystals, which had a four-fold symmetry morphology with a c-axis normal to the substrate.  相似文献   

8.
《Vacuum》2012,86(1):72-77
Yttrium trioxide (Y2O3) thin films have been deposited on silicon (111) at different RF powers and the sputtering pressures by RF magnetron sputtering. The influences of the RF power and the sputtering pressures on the structural and optical properties of Y2O3 thin films were investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscope (AFM) and spectroscopic ellipsometer (SE). The results show that chemical composition of as-deposited Y2O3 film is apparently close to the stoichiometric ratio and it is crystallized but crystallinity is poor. The monoclinic and cubic fluorite-like structure can coexist in as-deposited Y2O3 film. A four-layer-structured optical model consisting of silicon substrate, silicon dioxide (SiO2) interlayer, Y2O3 layer and a surface roughness (SR) layer is built for interpreting preferably the results measured by spectroscopic ellipsometry. With the increase of RF power or decrease of sputtering pressure, the refractive index and optical bandgap of sputtered Y2O3 film is increased and the extinction coefficients is decreased.  相似文献   

9.
F. Yan  Z.T. LiuW.T. Liu 《Vacuum》2011,86(1):72-77
Yttrium trioxide (Y2O3) thin films have been deposited on silicon (111) at different RF powers and the sputtering pressures by RF magnetron sputtering. The influences of the RF power and the sputtering pressures on the structural and optical properties of Y2O3 thin films were investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscope (AFM) and spectroscopic ellipsometer (SE). The results show that chemical composition of as-deposited Y2O3 film is apparently close to the stoichiometric ratio and it is crystallized but crystallinity is poor. The monoclinic and cubic fluorite-like structure can coexist in as-deposited Y2O3 film. A four-layer-structured optical model consisting of silicon substrate, silicon dioxide (SiO2) interlayer, Y2O3 layer and a surface roughness (SR) layer is built for interpreting preferably the results measured by spectroscopic ellipsometry. With the increase of RF power or decrease of sputtering pressure, the refractive index and optical bandgap of sputtered Y2O3 film is increased and the extinction coefficients is decreased.  相似文献   

10.
A systematic study was performed on the structural and electrical properties of cerium dioxide thin films grown on Si substrate with various deposition temperatures by RF magnetron sputtering. The films grown at 200°C are partly amorphous whereas those grown above 250°C are polycrystalline. An amorphous layer of SiO2 forms at the interface between the cerium dioxide film and the Si substrate. Cerium dioxide film grown at higher temperatures up to 500°C sustains more leakage current on the basis of current-voltage measurements. The electrical conduction of the films is well fitted by a power-law relation, which is explained as space-charge-limited current conduction with exponential distributed traps in the band gap. The variations of dielectric constant, flatband voltage, fixed oxide charge and interface-trapped charge with deposition temperature were studied by making capacitance-voltage measurements on an Al/CeO2/Si structure. The variations of electrical properties with temperature are strongly correlated with the formation of an amorphous SiO2 layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
This work investigates high-quality bottom electrode and piezoelectric film used in a thin-film bulk acoustic resonator (TFBAR) device. The titanium (Ti) seeding layer and platinum (Pt) bottom electrode were deposited on silicon substrates by DC sputtering using a dual-gun system. Zinc oxide (ZnO) was then deposited onto the Pt bottom electrode by RF magnetron sputtering. Field-emission scanning electron microscopy (SEM), atom force microscopy (AFM) and the four-point probe method showed that the Pt bottom electrode deposited on the Ti seeding layer exhibited favorable characteristics, such as a crystallite size of less than 10 nm, a surface roughness of 0.69 nm and a sheet resistance of 2.27 Ω/□. The ZnO thin film with a highly c-axis-preferred orientation (FWHM = 0.28°) and a roughness of 6.22 nm was investigated by X-ray diffraction (XRD) and AFM analysis, respectively. The bottom electrode with a low resistance and the highly crystalline ZnO thin film will contribute significantly to the favorable characteristics of the FBAR devices.  相似文献   

12.
In this paper, we explore RF magnetron sputtered Phosphor-silicate-glass (PSG) film as a sacrificial layer in surface micromachining technology. For this purpose, a 76 mm diameter target of phosphorus-doped silicon dioxide was prepared by conventional solid-state reaction route using P2O5 and SiO2 powders. The PSG films were prepared in a RF (13·56 MHz) magnetron sputtering system at 300 watt RF power, 20 mTorr pressure and 45 mm target-to-substrate spacing without external substrate heating. Microstructures of sputtered silicon dioxide film were fabricated using sputtered PSG film as sacrificial layer in surface micromachining process.  相似文献   

13.
ZnO films were prepared by atomic layer deposition upon a SiO2 layer on a Si substrate and treated by rapid thermal annealing. The optically-pumped random lasing actions with low threshold values were observed in the ZnO films on SiO2/Si substrates. With the decrease in ZnO film thickness or the increase in post-annealing duration, the stimulated emission shifted toward the shorter wavelength and the lasing threshold increased. The results can be attributed to the inter-diffusion between ZnO and SiO2, which causes the modification of bandgap renormalization in ZnO.  相似文献   

14.
Highly c-axis textured MgO thin films were grown directly on Si(100) substrates without any buffer layer by RF magnetron sputtering for use as growth template of ferroelectric film. We fixed the target-to-substrate spacing of 40 mm and then changed the substrate temperature, deposition pressure, and RF power to study the effect of deposition parameters on the growth of c-axis textured MgO thin films. The as-grown films were post-annealed by the rapid thermal annealing (RTA) and furnace annealing to improve the film quality. The experimental results show that the optimum deposition parameters are substrate temperature of 350 °C, oxygen pressure of 15 mTorr and RF power of 75 W. The full width at half maximum intensity (FWHM) of MgO(200) peak obtained from the XRD measurement was 0.8°, and it was further reduced to 0.5° and 0.27° after annealing by RTA and furnace, respectively. Highly c-axis textured PZT and BaTiO3 films could be obtained on this template. Hysteresis loops of the BaTiO3 films deposited on MgO(100) single crystalline substrate and MgO(200)/Si(100) template were measured for comparison. The results show that MgO/Si templates thus obtained are suitable for the synthesis of perovskite ferroelectric thin films.  相似文献   

15.
We investigated rutile-type titanium dioxide (TiO2) films for possible use as a high-k gate insulator. The TiO2 thin films were directly deposited on Si substrates using a RF magnetron sputtering method with a sintered oxide target. A single phase of rutile-type TiO2 whose dielectric constant of approximately 75 was obtained when the film was deposited in an inert gas atmosphere and annealed at 800 °C in an oxidizing gas atmosphere. The oxygen ions were deficient in the as-deposited film, and consequently, a sufficient oxygen supply was needed to crystallize the film to a single phase of rutile during the post-annealing. However, the interfacial SiO2 layer between the TiO2 and the Si substrate simultaneously grew thicker than 2 nm. As the interfacial SiO2 grew, the leakage current was decreased and the equivalent oxide thickness was increased, in the Au/rutile-type TiO2/Si capacitor. Therefore, we concluded that the growth of the interfacial SiO2 layer thicker than 2 nm is inevitable to form the single phase of rutile-type TiO2 and to decrease the leakage.  相似文献   

16.
The 80-nm-thickness BaTiO3 (BT) thin film was prepared on the Pt/Ti/SiO2/Si substrate by the RF magnetron sputtering technique. The Pt/BT/Pt/Ti/SiO2/Si structure was investigated using X-ray diffraction and scanning electron microscopy. The current-voltage characteristic measurements were performed. The bipolar resistive switching behavior was found in the Pt/BT/Pt cell. The current-voltage curves were well fitted in different voltage regions at the high resistance state (HRS) and the low resistance state (LRS), respectively. The conduction mechanisms are concluded to be Ohmic conduction and Schottky emission at the LRS, while space-charge-limited conduction and Poole-Frenkel emission at the HRS. The electroforming and switching processes were explained in terms of the valence change mechanism, in which oxygen vacancies play a key role in forming conducting paths.  相似文献   

17.
Since Au beam leads are desirable in termination areas of certain large scale integrated circuits (LSI) containing W metallization, the question arises as to whether W/Au combinations on oxidized silicon can withstand any of the high temperature LSI processing steps. We have found that heating certain Si/SiO2/W/ Au thin film combinations to 900°C can sometimes lead to catastrophic Au-Si eutectic formation. The eutectic formation is always associated with a few pinholes in the SiO2 and/or cracks in the W film. Once formed, it can spread rapidly over the surface of the Au layer. It tends to wet the W/SiO2/Si interfaces leaving a brown residue under the W metallization and causing loss of adhesion. It can also promote WSi2 formation in the W layer. Such catastrophic metallurgical interactions underline the need to control the metal film stresses, especially when multilayer metallization schemes are employed.  相似文献   

18.
Heterojunction diodes of n-type ZnO were fabricated on a p-type Si(100) substrate using an ultra-high vacuum radio frequency magnetron sputtering method at room temperature. A short-time post-annealing process was performed to prevent inter-diffusion of Zn, dopants, and Si atoms. The post-annealing process at 600 °C enhanced the crystallinity of ZnO films and produced a high forward to reverse current ratio of the heterojunction diode with a barrier height of approximately 0.336 eV. A thin SiOx layer at the interface of the ZnO film and Si substrate appeared distinctly at the 600 °C annealing, however the post-annealing at 700 °C showed an a-(Zn2xSi1 − xO2) structure caused by diffusion of silicon into the ZnO film. In the n-ZnO/p-Si sample annealed at 700 °C, a rapid change in the barrier height was considered due to the effect of the dopant segregation from the substrate and deformation of the a-SiOx structure.  相似文献   

19.
This is a report on the effect of a ZnO buffer layer on the microstructures and optical properties of MgZnO thin films grown on Si (100) substrates by radio frequency magnetron sputtering. For the sample without the ZnO buffer layer, the microstructural analyses carried out by X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed the formation of Mg2Si in the interface between the Si substrate and the MgZnO thin film. Mg2Si induced the random oriented polycrystalline MgZnO thin film. For the sample with the ZnO buffer layer, a few Mg2Si were observed. An epitaxial relationship between the Si substrate and the MgZnO thin film was formed. In both samples, the photoluminescence (PL) investigation showed a small blue shift of the emission peak, which was owing to the incorporation of Mg atoms in ZnO by co-sputtering the MgO and ZnO targets. In addition, the sample with the ZnO buffer layer showed the enhanced PL intensity, when compared with the sample without the buffer layer.  相似文献   

20.
(Ba1 − x Sr x )TiO3 (BST) thin films were deposited on Pt/Ti/SiO2/Si and YSZ/Pt/Ti/SiO2/Si substrates by radio frequency (RF) magnetron sputtering. The influence of YSZ interlayer on microstructures and dielectric properties of BST thin films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy and dielectric frequency spectra. It was found that the preferred orientation of BST thin films could be tailored by insertion of YSZ interlayer and adjusting the thickness of YSZ interlayer. The BST thin films deposited on YSZ interlayer exhibited a more compact and uniform grain structure than that deposited directly on Pt electrode. Dielectric measurement revealed that the BST thin films deposited on 10 nm YSZ interlayer have the largest dielectric constant and a low dielectric loss tangent. The enhanced dielectric behavior is mainly attributed to the YSZ interlayer which serves as an excellent seeding layer to enhance the crystallization of subsequent BST films layer, and a smaller thermal stress field built up at the interface between YSZ interlayer and BST film layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号