首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High entropy metallic glasses (MGs) have attracted tremendous attentions owing to high entropy that benefits the probing of new MG-forming systems. However, the micro-formability of high entropy MGs is lack of investigation in comparison with these conventional MG counterparts, which is crucial to the development of this kind of metallic alloys. In this work, the thermoplastic mciro-formability of TiZrHfNiCuBe high entropy MG was systemically investigated. Time-Temperature-Transformation (TTT) curve was first constructed based on isothermal crystallization experiments, which provides thermoplastic processing time of the supercooled high entropy MGs. By comparison with the deformation map, Newtonian flow was found beneficial to the thermoplastic formability. While the thermoplastic forming becomes arduous with reducing mould size to tens micrometer, because of the strong supercooled TiZrHfNiCuBe high entropy MG (fragility = 27). Fortunately, the micro-formability of TiZrHfNiCuBe high entropy MG could be improved by vibration loading, as demonstrated by finite-element-method simulation. Our findings not only systemically evaluate the thermoplastic micro-formability of high entropy MG, but also provide fundamental understanding of the phenomenon.  相似文献   

2.
陈思泉  李艳辉  张伟 《材料导报》2016,30(17):127-133
Al基金属玻璃具有高强度、高韧性、良好的耐蚀性,特别是其比强度高达330kN·m/kg,作为新结构材料在航空航天领域具有潜在的应用前景。近年不仅研发出了具有大过冷液相区以及能形成块体金属玻璃的Al基合金,还通过粉体温热固化成形工艺实现了Al基金属玻璃的大块体化,推动了其在实际生产中的应用。简述了有关Al基金属玻璃合金的玻璃形成能力、过冷液体热稳定性、力学性能及其粉末烧结体的组织和性能等方面的最新研究进展,并对其发展存在的问题进行了探讨。  相似文献   

3.
Pd-Ni-P metallic glass film fabricated by electroless alloy plating   总被引:1,自引:0,他引:1  
In the present study a Pd-Ni-P film has been fabricated by electroless alloy plating. The fabricated Pd-Ni-P film was found to be a metallic glass on the basis of two features, namely, an amorphous structure and a glass transition followed by crystallization during heating. The thermal stability of the supercooled liquid region, however, was lower than that of bulk Pd-Ni-P metallic glass. And unlike the conventional metallic glasses, the fabricated Pd-Ni-P film did not have a uniform microstructure. The non-uniform microstructure of this film resulted from the inhomogeneous distribution of the free volume accompanying the electroless alloy plating reaction.  相似文献   

4.
We report that the glass transition temperature (Tg) of a variety of metallic glasses (MGs) correlates with the eutectic or peritectic temperature of two main components corresponding stoichiometric proportion in their binary phase diagram. The correlation suggests that the Tg of MGs is mainly determined by their solvent of two base components, which have composition close to the eutectic and peritectic points in the binary phase diagram and the weakest link in amorphous structure. The results have implications for understanding the structure and glass transition in MGs and for predicting and designing metallic glasses with a desirable Tg.  相似文献   

5.
Liquid dynamics plays an essential role in glass formation.Here we observed a distinct change of liquid dynamics in Gd55Co20Al25 metallic glass induced by microalloying Si element.In the equilibrium melt,minor Si(0.5 at.%)addition leads to a more fragile liquid behavior and a smaller strength of liquid-liquid transition with the transition strength(ΔF)decreasing from 0.76 to 0.35.However,in the supercooled liquid,Si-doped liquid exhibits a remarkable enhanced fragile-to-strong transition(FST),and the value of FST factor f increases sharply from 1.63 to 3.84,resulting in a stronger liquid behavior and more sluggish crystallization kinetics for Gd55Co20Al24.5Si0.5 metallic glass.Moreover,minor Si addition promotes the formation of a crystal-like structure with a size of 1-2 nm.The interactions between the crystal-like structures and other local favored clusters frustrate the further growth of crystal-like phases,thus sta-bilizes the amorphous structure.As a result,the glass-forming ability(GFA)was largely improved.The critical diameter of Gd55Co20Al25 metallic glass increased from 2 to 7 mm with 0.5 at.%Si addition with-out deterioration of the magnetocaloric effect.This study provides valuable insight for understanding the distinct effect of microalloying on GFA of metallic glasses from the aspect of the evolution of the liquid.  相似文献   

6.
The homogeneous plastic flow of fully amorphous and partially crystallized Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory.Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystallized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amorphous alloy. Thus, it is proposed that the flow behavior of the nanocrystalline/amorphous composite at 646 K is mainly controlled by the viscous flow of the remaining supercooled liquid.  相似文献   

7.
Amorphous silicon is a semiconductor with a lower density than the metallic silicon liquid. It is widely believed that the amorphous-liquid transition is a first-order melting transition. In contrast to this, recent computer simulations and the experimental observation of pressure-induced amorphization of nanoporous silicon have revived the idea of an underlying liquid-liquid phase transition implying the existence of a low-density liquid and its glass transition to the amorphous solid. Here we demonstrate that during irradiation with high-energy heavy ions amorphous silicon deforms plastically in the same way as conventional glasses. This behaviour provides experimental evidence for the existence of the low-density liquid. The glass transition temperature for a timescale of 10 picoseconds is estimated to be about 1,000 K. Our results support the idea of liquid polymorphism as a general phenomenon in tetrahedral networks.  相似文献   

8.
Metallic glass nanowires were spontaneously created on the fracture surfaces that were produced by a conventional mechanical test. The presence of the nanowires is directly related to the one-dimensional meniscus configuration with a small viscosity at high temperatures and to the wide supercooled liquid region of the metallic glass. The electron microscopic observations demonstrate the diameters, the lengths, and the amorphous structural states, and the energy dispersive X-ray reveals the chemical components. In addition, we found that round ridges are constructed from nanotubes. The finding of amorphous nanostructures not only provides a fundamental understanding of fracture processes but also gives a new insight into nanoengineering constructions.  相似文献   

9.
Excessive consumption of electrical energy has hampered the widespread application of electrochemical technology for degradation of various contaminants. In this paper, a Fe-based metallic glass (MG) was demonstrated as a new type of electrocatalyst to effectively and economically degrade an azo dye. In comparison to other typical electrodes, Fe-based MG electrodes exhibit a minimized degradation time, and the specific energy is 4–6 orders of magnitude lower than that of dimensionally stable anode (DSA), metal-like boron-doped diamond (BDD) and other electrodes. As sacrificial electrode materials, Fe-based MGs have less specific electrode mass consumption than iron electrodes. The use of Fe-based MGs will promote the practical application of electrochemical technology and the use of MGs as functional materials.  相似文献   

10.
The mechanism and kinetics of acid orange II(AOII) treated by aged gas-atomized Fe-Si-B metallic glass(MG) powders were investigated in this study. The decolorization reaction is shown to obey the pseudofirst-order kinetic model, and the treatment processes could be divided into two stages: a slow step followed by a rapid one. This observation is in accordance with the following results, the azo dye is simply adsorbed onto the Fe-based MG powders in the initial stage, because the oxide layer coated on the powder surface depresses the degradation reaction by covering the activity sites, and then the degradation occurs with the desquamation of the powders. The AOII could be degraded with a rapid reaction rate when the Fe-based MG powders are applied to the treatment process again, because of the consumption of the oxide layer and the unchanged core of the Fe-based MGs. These findings will promote the practical application of MGs in degrading azo dyes.  相似文献   

11.
When bulk materials are made into micro‐and nanoscale fibers, there will be attractive improvement of structural and functional properties, even unusual experimental phenomena [Ref. 3 ]. The main drawback of various applications of metallic fibers is poor ability of present fabrication methods for controlling their dimensions and surface properties [Ref. 4 ]. Metallic glassy fibers (MGFs) are desired because of unique mechanical and physical properties and glass‐like thermoplastic processability of metallic glasses (MGs). Here, we report a synthetic route for production of micro‐to nanoscale MGFs (the diameter ranges from 100 µm to 70 nm) by driving bulk metallic glass rods in their supercooled liquid region via superplastic deformation. Compared with existing metallic fibers, the MGFs have precisely designed and controlled properties and size, high structural uniformity and surface smoothness, and extremely flexibility. Remarkably, the method is simple, efficient, and low cost, and the MGFs can be continuous prepared by the method. Furthermore, the MGFs circumvent brittleness of MGs by size reduction. We proposed a parameter based on the thermal and rheological properties of MG‐forming alloys to control the preparation and size of the fibers. The MGFs with superior properties might attract intensive scientific interest and open wide engineering and functional applications of glassy alloys.  相似文献   

12.
The effects of acyclic liquid nitrogen(LN) treatment in a temperature range of -196℃ to 50℃ on the thermal and magnetic stability of Fe_(78)Si_9B_(13) and Fe_(73.5)Si_(13.5)B_9Nb_3Cu_1 glassy ribbons have been studied.The intrinsic heterogeneities of the metallic glasses can be activated through cryogenic thermal cycling,making irreversible structural changes after the treatment and inducing rejuvenation to the materials.The microstructural changes of both Fe-based metallic glass(MG) and nanocrystalline alloy induced by LN treatment were investigated. The experimental results show that the LN treatment could effectively rejuvenate the Fe-Si-B MGs and change their thermomechanical and magnetic properties. Based on the partially-crystallinity and well-known magnetic constants, the increase of the energy at the order of 10m J/g and magnetic domain wall movement and rotation at the order of 5-6 μm and 0.5°-0.8°are found for FINEMET-type amorphous alloy after LN treatment. It is also found that LN treatment can contribute a little stored energy to the magnetic domain wall movement and magnetic domain rotation.  相似文献   

13.
Amorphous and crystalline forms of silicon are well-known, tetrahedrally coordinated semiconductors. High-pressure studies have revealed extensive polymorphism among various metallic crystal structures containing atoms in six-, eight- and 12-fold coordination. Melting silicon at ambient or high pressure results in a conducting liquid, in which the average coordination is greater than four (ref. 3). This liquid cannot normally be quenched to a glass, because of rapid crystallization to the diamond-structured semiconductor. Solid amorphous silicon is obtained by synthesis routes such as chemical or physical vapour deposition that result in a tetrahedrally bonded semiconducting state. It has long been speculated that the amorphous solid and the liquid could represent two polymorphic forms of the amorphous state that are linked by density- or entropy-driven transformations. Such polyamorphic transitions are recognized to occur among several different types of liquid and glassy systems. Here we present experimental evidence for the occurrence of a density-driven polyamorphic transition between semiconducting and metallic forms of solid amorphous silicon. The experiments are combined with molecular dynamics simulations that map the behaviour of the amorphous solid on to that of the liquid state.  相似文献   

14.
The existence of more than two liquid states in a single-component substance and the ensuing liquid-liquid transitions (LLTs) has attracted considerable attention because of its counterintuitive nature and its importance in the fundamental understanding of the liquid state. Here we report direct experimental evidence for a genuine (isocompositional) LLT without macroscopic phase separation in an aqueous solution of glycerol. We show that liquid I transforms into liquid II by way of two types of kinetics: nucleation and growth, and spinodal decomposition. Although liquid II is metastable against crystallization, we could access both its static and dynamical properties experimentally. We find that liquids I and II differ in density, refractive index, structure, hydrogen bonding state, glass transition temperature and fragility, and that the transition between the two liquids is mainly driven by the local structuring of water rather than of glycerol, suggesting a link to a plausible LLT in pure water.  相似文献   

15.
铝基非晶合金具有密度低、强度高、耐腐蚀等诸多优异性能;然而,铝基非晶合金形成能力差,一般需要非常高的冷却速率,这限制了铝基非晶合金的应用.玻璃形成理论认为形成能力与过冷液体密切相关.但在一般升温测量时,铝基非晶合金不显示玻璃转变或过冷液体,而是直接变成晶态.目前为止,关于铝基非晶合金的玻璃转变和过冷液体属性仍然是未知的.本文采用超快速差热分析方法(Flash DSC)使得升温速度达到10000 K s^-1,测量了20余种常见铝基非晶合金的玻璃转变行为和过冷液体特征.发现铝基非晶合金普遍具有很高的液体脆度系数(m),其中某些成分m>160,已经接近理论上预测的脆度系数上限m^175.通过系统研究这些成分的形成能力,发现铝基非晶合金的玻璃形成能力与脆度系数成反相关,而且这种相关不是线性的.只有m<100时,降低m才会对玻璃形成能力有明显影响;相反, m>100的玻璃形成力普遍较弱,而且随m变化不显著.因此,过高的液体脆度系数可能是铝基非晶合金形成能力差的一个重要原因.  相似文献   

16.
The homogeneous plastic flow of fully amorphous and partially crystallized Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) bulk metallic glass (Vitl) has been investigated by compression tests at high temperatures in supercooled liquid region. Experimental results show that at sufficiently low strain rates, the supercooled liquid of the fully amorphous alloy reveals Newtonian flow with a linear relationship between the flow stress and strain rate. As the strain rate is increased, a transition from linear Newtonian to nonlinear flow is detected, which can be explained by the transition state theory. Over the entire strain rate interval investigated, however, only nonlinear flow is present in the partially crystallized alloy, and the flow stress for each strain rate is much higher. It is found that the strain rate-stress relationship for the partially crystaltized alloy at the given temperature of 646 K also obeys the sinh law derived from the transition state theory, similar to that of the initial homogeneous amo  相似文献   

17.
《Materials Letters》2007,61(4-5):1027-1030
The structure of the melt-spun Cu60Zr30Ti10 metallic glass is investigated by anomalous small angle X-ray scattering (ASAXS). It is confirmed that the compositional segregation in the diameter range of 30–50 nm exists in the as-quenched state. ASAXS results have convincingly shown the aggregation of Cu atoms and the formation of Cu-rich domains in the amorphous matrix. The Cu-rich domains grow slightly with low growth rate below the glass transition temperature, while the sizes of these domains drastically increase with high growth rate in the supercooled liquid temperature region. The Cu-rich domains are presumed to be associated with nucleation for the primary crystallization process.  相似文献   

18.
This work investigates the evolution of structure and mechanical performance of metallic glasses(MGs)under a proposed rapid forming approach. Through the unique ultrasonic-assisted micro injection method, micro MGs parts with fine dimensional accuracy were successfully fabricated. The temperature during the micro injection is higher than the glass transition temperature and lower than the crystallization temperature. Differential scanning calorimeter curve and X-ray diffraction pattern show that the MGs micro parts keep the amorphous nature after the ultrasonic-assisted micro injection. Our results propose a novel route for the fast forming of MGs and have promising applications in the rapid fabrication of micro scale products and devices.  相似文献   

19.
A fundamental understanding of the glass transition is essential for enabling future breakthroughs in glass science and technology. In this paper, we review recent advances in the modeling of glass transition range behavior based on the enthalpy landscape approach. We also give an overview of new simulation techniques for implementation of enthalpy landscape models, including techniques for mapping the landscape and computing the long-time dynamics of the system. When combined with these new computational techniques, the enthalpy landscape approach can provide for the predictive modeling of glass transition and relaxation behavior on a laboratory time scale. We also discuss new insights from the enthalpy landscape approach into the nature of the supercooled liquid and glassy states. In particular, the enthalpy landscape approach provides for natural resolutions of both the Kauzmann paradox and the question of residual entropy of glass at absolute zero. We further show that the glassy state cannot be described in terms of a mixture of equilibrium liquid states, indicating that there is no microscopic basis for the concept of a fictive temperature distribution and that the glass and liquid are two fundamentally different states. We also discuss the connection between supercooled liquid fragility and the ideal glass transition.  相似文献   

20.
A metal, or an alloy, can often exist in more than one crystal structure. The face-centred-cubic and body-centred-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce(55)Al(45) metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modelling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号