首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
A set of solutions for the equationsf(x)±f(y) =k is described, where fis a 2-quasiperiodic and strictly monotonous function in No. The results are applied for investigation of a diametrically-threshold function for graphs and of a maximal type of complete bipartite graph. Translated from Kibernetika i Sistemnyi Analiz, No. 2, pp. 170–174, March–April, 2000  相似文献   

2.
3.
A bipartite graph G=(V,W,E) is convex if there exists an ordering of the vertices of W such that, for each vV, the neighbors of v are consecutive in W. We describe both a sequential and a BSP/CGM algorithm to find a maximum independent set in a convex bipartite graph. The sequential algorithm improves over the running time of the previously known algorithm and the BSP/CGM algorithm is a parallel version of the sequential one. The complexity of the algorithms does not depend on |W|. This work was supported by FAPESP (Proc. 98/06327-0). The first author was also supported by FAPESP (Proc. 96/04505–2), and CNPq/MCT/FINEP (PRONEX project 107/97).  相似文献   

4.
In this article we discuss singularly perturbed convection–diffusion equations in a channel in cases producing parabolic boundary layers. It has been shown that one can improve the numerical resolution of singularly perturbed problems involving boundary layers, by incorporating the structure of the boundary layers into the finite element spaces, when this structure is available; see e.g. [Cheng, W. and Temam, R. (2002). Comput. Fluid. V.31, 453–466; Jung, C. (2005). Numer. Meth. Partial Differ. Eq. V.21, 623–648]. This approach is developed in this article for a convection–diffusion equation. Using an analytical approach, we first derive an approximate (simplified) form of the parabolic boundary layers (elements) for our problem; we then develop new numerical schemes using these boundary layer elements. The results are performed for the perturbation parameter ε in the range 10−1–10−15 whereas the discretization mesh is in the range of order 1/10–1/100 in the x-direction and of order 1/10–1/30 in the y-direction. Indications on various extensions of this work are briefly described at the end of the Introduction.Dedicated to David Gottlieb on his 60th birthday.  相似文献   

5.
We construct a randomness-efficient averaging sampler that is computable by uniform constant-depth circuits with parity gates (i.e., in uniform AC 0[⊕]). Our sampler matches the parameters achieved by random walks on constant-degree expander graphs, allowing us to apply a variety expander-based techniques within NC 1. For example, we obtain the following results:
•  Randomness-efficient error-reduction for uniform probabilistic NC 1, TC 0, AC 0[⊕] and AC 0: Any function computable by uniform probabilistic circuits with error 1/3 using r random bits is computable by circuits of the same type with error δ using r + O(log(1/δ)) random bits.
•  An optimal bitwise ϵ-biased generator in AC 0[⊕]: There exists a 1/2Ω(n)-biased generator G : {0, 1} O(n) → {0, 1}2n for which poly(n)-size uniform AC 0[⊕] circuits can compute G(s) i given (s, i) ∈ {0, 1} O(n)  ×  {0, 1} n . This resolves question raised by Gutfreund and Viola (Random 2004).
•  uniform BP · AC 0 ⊆ uniform AC 0/O(n).
Our sampler is based on the zig-zag graph product of Reingold, Vadhan & Wigderson (Annals of Math 2002) and as part of our analysis we givean elementary proof of a generalization of Gillman’s Chernoff Bound for Expander Walks (SIAM Journal on Computing 1998).   相似文献   

6.
In this paper, we study formally high-order accurate discontinuous Galerkin methods on general arbitrary grid for multi-dimensional hyperbolic systems of conservation laws [Cockburn, B., and Shu, C.-W. (1989, Math. Comput. 52, 411–435, 1998, J. Comput. Phys. 141, 199–224); Cockburn et al. (1989, J. Comput. Phys. 84, 90–113; 1990, Math. Comput. 54, 545–581). We extend the notion of E-flux [Osher (1985) SIAM J. Numer. Anal. 22, 947–961] from scalar to system, and found that after flux splitting upwind flux [Cockburn et al. (1989) J. Comput. Phys. 84, 90–113] is a Riemann solver free E-flux for systems. Therefore, we are able to show that the discontinuous Galerkin methods satisfy a cell entropy inequality for square entropy (in semidiscrete sense) if the multi-dimensional systems are symmetric. Similar result [Jiang and Shu (1994) Math. Comput. 62, 531–538] was obtained for scalar equations in multi-dimensions. We also developed a second-order finite difference version of the discontinuous Galerkin methods. Numerical experiments have been obtained with excellent results.   相似文献   

7.
In this paper we consider the p-ary transitive reduction (TR p ) problem where p>0 is an integer; for p=2 this problem arises in inferring a sparsest possible (biological) signal transduction network consistent with a set of experimental observations with a goal to minimize false positive inferences even if risking false negatives. Special cases of TR p have been investigated before in different contexts; the best previous results are as follows:
(1)  The minimum equivalent digraph problem, that correspond to a special case of TR1 with no critical edges, is known to be MAX-SNP-hard, admits a polynomial time algorithm with an approximation ratio of 1.617+ε for any constant ε>0 (Chiu and Liu in Sci. Sin. 4:1396–1400, 1965) and can be solved in linear time for directed acyclic graphs (Aho et al. in SIAM J. Comput. 1(2):131–137, 1972).
(2)  A 2-approximation algorithm exists for TR1 (Frederickson and JàJà in SIAM J. Comput. 10(2):270–283, 1981; Khuller et al. in 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 937–938, 1999).
In this paper, our contributions are as follows:
•  We observe that TR p , for any integer p>0, can be solved in linear time for directed acyclic graphs using the ideas in Aho et al. (SIAM J. Comput. 1(2):131–137, 1972).
•  We provide a 1.78-approximation for TR1 that improves the 2-approximation mentioned in (2) above.
•  We provide a 2+o(1)-approximation for TR p on general graphs for any fixed prime p>1.
R. Albert’s research was partly supported by a Sloan Research Fellowship in Science and Technology. B. DasGupta’s research was partly supported by NSF grants DBI-0543365, IIS-0612044 and IIS-0346973. E. Sontag’s research was partly supported by NSF grants EIA 0205116 and DMS-0504557.  相似文献   

8.
A graph G is said to be a bicluster graph if G is a disjoint union of bicliques (complete bipartite subgraphs), and a cluster graph if G is a disjoint union of cliques (complete subgraphs). In this work, we study the parameterized versions of the NP-hard Bicluster Graph Editing and Cluster Graph Editing problems. The former consists of obtaining a bicluster graph by making the minimum number of modifications in the edge set of an input bipartite graph. When at most k modifications are allowed (Bicluster(k) Graph Editing problem), this problem is FPT, and can be solved in O(4 k nm) time by a standard search tree algorithm. We develop an algorithm of time complexity O(4 k +n+m), which uses a strategy based on modular decomposition techniques; we slightly generalize the original problem as the input graph is not necessarily bipartite. The algorithm first builds a problem kernel with O(k 2) vertices in O(n+m) time, and then applies a bounded search tree. We also show how this strategy based on modular decomposition leads to a new way of obtaining a problem kernel with O(k 2) vertices for the Cluster(k) Graph Editing problem, in O(n+m) time. This problem consists of obtaining a cluster graph by modifying at most k edges in an input graph. A previous FPT algorithm of time O(1.92 k +n 3) for this problem was presented by Gramm et al. (Theory Comput. Syst. 38(4), 373–392, 2005, Algorithmica 39(4), 321–347, 2004). In their solution, a problem kernel with O(k 2) vertices is built in O(n 3) time.  相似文献   

9.
Given a class C of graphs, a graph G=(V,E) is said to be a C-probe graph if there exists a stable (i.e., independent) set of vertices XV and a set F of pairs of vertices of X such that the graph G=(V,EF) is in the class C. Recently, there has been increasing interest and research on a variety of C-probe graph classes, such as interval probe graphs, chordal probe graphs and chain probe graphs.In this paper we focus on chordal-bipartite probe graphs. We prove a structural result that if B is a bipartite graph with no chordless cycle of length strictly greater than 6, then B is chordal-bipartite probe if and only if a certain “enhanced” graph B is a chordal-bipartite graph. This theorem is analogous to a result on interval probe graphs in Zhang (1994) [18] and to one on chordal probe graphs in Golumbic and Lipshteyn (2004) [11].  相似文献   

10.
We present a time algorithm finding a minimum feedback vertex set in an undirected graph on n vertices. We also prove that a graph on n vertices can contain at most 1.8638 n minimal feedback vertex sets and that there exist graphs having 105 n/10≈1.5926 n minimal feedback vertex sets. Preliminary extended abstracts of this paper appeared in the proceedings of SWAT’06 [29] and IWPEC’06 [18]. Additional support of F.V. Fomin, S. Gaspers and A.V. Pyatkin by the Research Council of Norway. The work of A.V. Pyatkin was partially supported by grants of the Russian Foundation for Basic Research (project code 05-01-00395), INTAS (project code 04–77–7173). I. Razgon is supported by Science Foundation Ireland (Grant Number 05/IN/I886).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号