首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 136 毫秒
1.
谢坤武  胡俊鹏 《计算机工程》2008,34(10):101-102
提出一种高维数据集合聚类算法(CAHD)。采用双向搜索策略在指定的n维空间或其子空间上发现数据点密集的单元区域,采用逐位相与的方法为这些密集单元区域聚类。双向搜索策略能够有效地减少搜索空间,提高算法效率,聚类密集单元区域只用到逐位与和位移2种机器指令。实验结果表明,在发现的类数量相同的情况下,CAHD算法的运行时间比其他算法减少30%。  相似文献   

2.
提出了一种基于空间单元单维运算的快速聚类算法SUSDC。该算法首先将被聚类的数据逐维划分成 若干个不相交的空间单元;然后基于空间距离阈值判定相邻的空间单元是否合并,直到全部维处理完毕。实验 结果验证了SUSDC算法运算速度快,能够处理不规则形状数据和高维数据,且具有对噪声数据不敏感的特点。  相似文献   

3.
高维数据聚类是聚类技术的难点和重点,子空间聚类是实现高维数据集聚类的有效途径,它是在高维数据空间中对传统聚类算法的一种扩展,其思想是将搜索局部化在相关维中进行.该文从不同的搜索策略即自顶向下策略和自底向上策略两个方面对子空间聚类算法的思想进行了介绍,对近几年提出的子空间聚类算法作了综述,从算法所需参数、算法对参数的敏感度、算法的可伸缩性以及算法发现聚类的形状等多个方面对典型的子空间聚类算法进行了比较分析,对子空间聚类算法面临的挑战和未来的发展趋势进行了讨论.  相似文献   

4.
一种基于密度单元的自扩展聚类算法   总被引:4,自引:0,他引:4  
提出一种高效的基于密度单元的自扩展聚类算法SECDU.首先将数据空间等分为若干个密度单元,再根据数据点的位置将其划分到所属的密度单元中,然后针对密度单元进行聚类.聚类首先产生在数据最密集的区域,然后向周围低密度区域延伸.聚类在延伸的过程中体积逐渐增大,密度逐渐减小,直到聚类的密度达到一个事先规定的限度时为止.算法在保留原有数据分布特性的前提下利用密度单元对数据进行压缩,并在保证具有较好效果的前提下大幅度地提高了聚类的速度.  相似文献   

5.
随着信息技术的飞速发展和大数据时代的来临,数据呈现出高维性、非线性等复杂特征。对于高维数据来说,在全维空间上往往很难找到反映分布模式的特征区域,而大多数传统聚类算法仅对低维数据具有良好的扩展性。因此,传统聚类算法在处理高维数据的时候,产生的聚类结果可能无法满足现阶段的需求。而子空间聚类算法搜索存在于高维数据子空间中的簇,将数据的原始特征空间分为不同的特征子集,减少不相关特征的影响,保留原数据中的主要特征。通过子空间聚类方法可以发现高维数据中不易展现的信息,并通过可视化技术展现数据属性和维度的内在结构,为高维数据可视分析提供了有效手段。总结了近年来基于子空间聚类的高维数据可视分析方法研究进展,从基于特征选择、基于子空间探索、基于子空间聚类的3种不同方法进行阐述,并对其交互分析方法和应用进行分析,同时对高维数据可视分析方法的未来发展趋势进行了展望。  相似文献   

6.
基于k最相似聚类的子空间聚类算法   总被引:3,自引:2,他引:1       下载免费PDF全文
子空间聚类是聚类研究领域的一个重要分支和研究热点,用于解决高维聚类分析面临的数据稀疏问题。提出一种基于k最相似聚类的子空间聚类算法。该算法使用一种聚类间相似度度量方法保留k最相似聚类,在不同子空间上采用不同局部密度阈值,通过k最相似聚类确定子空间搜索方向。将处理的数据类型扩展到连续型和分类型,可以有效处理高维数据聚类问题。实验结果证明,与CLIQUE和SUBCLU相比,该算法具有更好的聚类效果。  相似文献   

7.
聚类分析是数据挖掘中的一个重要研究课题。在许多实际应用中,聚类分析的数据往往具有很高的维度,例如文档数据、基因微阵列等数据可以达到上千维,而在高维数据空间中,数据的分布较为稀疏。受这些因素的影响,许多对低维数据有效的经典聚类算法对高维数据聚类常常失效。针对这类问题,本文提出了一种基于遗传算法的高维数据聚类新方法。该方法利用遗传算法的全局搜索能力对特征空间进行搜索,以找出有效的聚类特征子空间。同时,为了考察特征维在子空间聚类中的特征,本文设计出一种基于特征维对子空间聚类贡献率的适应度函数。人工数据、真实数据的实验结果以及与k-means算法的对比实验证明了该方法的可行性和有效性。  相似文献   

8.
高维数据的稀疏性和"维灾"问题使得多数传统聚类算法失去作用,因此研究高维数据集的聚类算法己成为当前的一个热点.子空间聚类算法是实现高维数据集聚类的有效方法之一.介绍并实现了基于可变加权的高维数据子空间聚类算法SCAD和EWKM,并分别对人造数据、现实数据等数据集进行测试,根据测试结果进行分析,对比两种算法的性能及适用场合.  相似文献   

9.
朱林  雷景生  毕忠勤  杨杰 《软件学报》2013,24(11):2610-2627
针对高维数据的聚类研究表明,样本在不同数据簇往往与某些特定的数据特征子集相对应.因此,子空间聚类技术越来越受到关注.然而,现有的软子空间聚类算法都是基于批处理技术的聚类算法,不能很好地应用于高维数据流或大规模数据的聚类研究中.为此,利用模糊可扩展聚类框架,与熵加权软子空间聚类算法相结合,提出了一种有效的熵加权流数据软子空间聚类算法——EWSSC(entropy-weighting streaming subspace clustering).该算法不仅保留了传统软子空间聚类算法的特性,而且利用了模糊可扩展聚类策略,将软子空间聚类算法应用于流数据的聚类分析中.实验结果表明,EWSSC 算法对于高维数据流可以得到与批处理软子空间聚类方法近似一致的实验结果.  相似文献   

10.
许多实际问题的解决不仅需要聚类算法给出类标,更依赖于类间远近关系的辨别.对于类数较多且高维数据的困难情况,基于降维的聚类结果可视化方法通常会出现聚类的重叠、交织或强行拉远现象,使得一些类间的远近关系无法分辨或被错误显示;而现有的类间距离方法则不能揭示两个聚类是远离还是靠近.本文提出了双几何体模型方法来描述两个聚类的类间关系,并设计了相对边界距离、绝对边界距离和区域疏密程度等测量类间远近程度的方法.本文方法既考虑了两个聚类的最近样本集之间的绝对距离,也考虑了聚类边界区域的疏密程度,其优点是在上述困难情况下也能准确揭示高维空间中的类间关系.对真实数据集的实验结果表明,双几何体模型方法能有效地识别现有聚类可视化方法无法辨别的类间远近关系.  相似文献   

11.
Clustering in high-dimensional spaces is a difficult problem which is recurrent in many domains, for example in image analysis. The difficulty is due to the fact that high-dimensional data usually exist in different low-dimensional subspaces hidden in the original space. A family of Gaussian mixture models designed for high-dimensional data which combine the ideas of subspace clustering and parsimonious modeling are presented. These models give rise to a clustering method based on the expectation-maximization algorithm which is called high-dimensional data clustering (HDDC). In order to correctly fit the data, HDDC estimates the specific subspace and the intrinsic dimension of each group. Experiments on artificial and real data sets show that HDDC outperforms existing methods for clustering high-dimensional data.  相似文献   

12.
谱嵌入聚类(SEC)算法要求样本满足流形假设,样本标签总是可以嵌入到一个线性空间中去,这为线性可分数据的谱嵌入聚类问题提供了新的思路,但该算法使用的线性映射函数不适用于处理高维非线性数据。针对这一问题,通过核化线性映射函数,建立了基于核函数的谱嵌入聚类(KSEC)模型,该模型既能解决线性映射函数不能处理非线性数据的问题,又实现了对高维数据的核降维。在真实数据集上的实验分析结果表明,使用所提算法后聚类正确率平均提高了13.11%,最高可提高31.62%,特别在高维数据上平均提高了16.53%,而且在算法关于参数的敏感度实验中发现算法的稳定性更好。所以改进后的算法对高维非线性数据具有很好的聚类效果,获得了比传统谱嵌入聚类算法更高的聚类准确率和更好的聚类性能。所提方法可以用于诸如遥感影像这类复杂图像的处理领域。  相似文献   

13.
Mining Projected Clusters in High-Dimensional Spaces   总被引:1,自引:0,他引:1  
Clustering high-dimensional data has been a major challenge due to the inherent sparsity of the points. Most existing clustering algorithms become substantially inefficient if the required similarity measure is computed between data points in the full-dimensional space. To address this problem, a number of projected clustering algorithms have been proposed. However, most of them encounter difficulties when clusters hide in subspaces with very low dimensionality. These challenges motivate our effort to propose a robust partitional distance-based projected clustering algorithm. The algorithm consists of three phases. The first phase performs attribute relevance analysis by detecting dense and sparse regions and their location in each attribute. Starting from the results of the first phase, the goal of the second phase is to eliminate outliers, while the third phase aims to discover clusters in different subspaces. The clustering process is based on the K-means algorithm, with the computation of distance restricted to subsets of attributes where object values are dense. Our algorithm is capable of detecting projected clusters of low dimensionality embedded in a high-dimensional space and avoids the computation of the distance in the full-dimensional space. The suitability of our proposal has been demonstrated through an empirical study using synthetic and real datasets.  相似文献   

14.
聚类分析是数据挖掘中重要内容之一,也是人们分析数据的重要工具。针对聚类分析中存在易受噪声干扰、高维数据聚类结果不佳等问题,对弹性网络进行了加权聚类方向的研究。该算法考虑到数据集中各特征属性在聚类过程中不同的重要程度,重新构造关联数据点、聚类中心点的能量函数,利用弹性网络算法的求解模式,结合极大熵原理、模拟退火思想,提出一种具有加权特性的弹性网络聚类算法。该算法无需人工指导训练,便可以自学习地求解出高质量的聚类结果。通过不同维度、不同数量级的随机数据集和UCI真实数据集仿真实验,验证了算法的有效性和稳定性。相较于传统聚类算法,该算法显著提高了聚类质量。  相似文献   

15.
高维数据流的自适应子空间聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
高维数据流聚类是数据挖掘领域中的研究热点。由于数据流具有数据量大、快速变化、高维性等特点,许多聚类算法不能取得较好的聚类质量。提出了高维数据流的自适应子空间聚类算法SAStream。该算法改进了HPStream中的微簇结构并定义了候选簇,只在相应的子空间内计算新来数据点到候选簇质心的距离,减少了聚类时被检查微簇的数目,将形成的微簇存储在金字塔时间框架中,使用时间衰减函数删除过期的微簇;当数据流量大时,根据监测的系统资源使用情况自动调整界限半径和簇选择因子,从而调节聚类的粒度。实验结果表明,该算法具有良好的聚类质量和快速的数据处理能力。  相似文献   

16.
机器学习的无监督聚类算法已被广泛应用于各种目标识别任务。基于密度峰值的快速搜索聚类算法(DPC)能快速有效地确定聚类中心点和类个数,但在处理复杂分布形状的数据和高维图像数据时仍存在聚类中心点不容易确定、类数偏少等问题。为了提高其处理复杂高维数据的鲁棒性,文中提出了一种基于学习特征表示的密度峰值快速搜索聚类算法(AE-MDPC)。该算法采用无监督的自动编码器(AutoEncoder)学出数据的最优特征表示,结合能刻画数据全局一致性的流形相似性,提高了同类数据间的紧致性和不同类数据间的分离性,促使潜在类中心点的密度值成为局部最大。在4个人工数据集和4个真实图像数据集上将AE-MDPC与经典的K-means,DBSCAN,DPC算法以及结合了PCA的DPC算法进行比较。实验结果表明,在外部评价指标聚类精度、内部评价指标调整互信息和调整兰德指数上,AE-MDPC的聚类性能优于对比算法,而且提供了更好的可视化性能。总之,基于特征表示学习且结合流形距离的AE-MDPC算法能有效地处理复杂流形数据和高维图像数据。  相似文献   

17.
This paper presents a new k-means type algorithm for clustering high-dimensional objects in sub-spaces. In high-dimensional data, clusters of objects often exist in subspaces rather than in the entire space. For example, in text clustering, clusters of documents of different topics are categorized by different subsets of terms or keywords. The keywords for one cluster may not occur in the documents of other clusters. This is a data sparsity problem faced in clustering high-dimensional data. In the new algorithm, we extend the k-means clustering process to calculate a weight for each dimension in each cluster and use the weight values to identify the subsets of important dimensions that categorize different clusters. This is achieved by including the weight entropy in the objective function that is minimized in the k-means clustering process. An additional step is added to the k-means clustering process to automatically compute the weights of all dimensions in each cluster. The experiments on both synthetic and real data have shown that the new algorithm can generate better clustering results than other subspace clustering algorithms. The new algorithm is also scalable to large data sets.  相似文献   

18.
Clustering based on a near neighbor graph and a grid cell graph   总被引:2,自引:0,他引:2  
This paper presents two novel graph-clustering algorithms, Clustering based on a Near Neighbor Graph (CNNG) and Clustering based on a Grid Cell Graph (CGCG). CNNG algorithm inspired by the idea of near neighbors is an improved graph-clustering method based on Minimum Spanning Tree (MST). In order to analyze massive data sets more efficiently, CGCG algorithm, which is a kind of graph-clustering method based on MST on the level of grid cells, is presented. To clearly describe the two algorithms, we give some important concepts, such as near neighbor point set, near neighbor undirected graph, grid cell, and so on. To effectively implement the two algorithms, we use some efficient partitioning and index methods, such as multidimensional grid partition method, multidimensional index tree, and so on. From simulation experiments of some artificial data sets and seven real data sets, we observe that the time cost of CNNG algorithm can be decreased by using some improving techniques and approximate methods while attaining an acceptable clustering quality, and CGCG algorithm can approximately analyze some dense data sets with linear time cost. Moreover, comparing some classical clustering algorithms, CNNG algorithm can often get better clustering quality or quicker clustering speed.  相似文献   

19.
邱保志  程栾 《计算机应用》2018,38(9):2511-2514
针对聚类算法的聚类中心选取需要人工参与的问题,提出了一种基于拉普拉斯中心性和密度峰值的无参数聚类算法(ALPC)。首先,使用拉普拉斯中心性度量对象的中心性;然后,使用正态分布概率统计方法确定聚类中心对象;最后,依据对象到各个中心的距离将各个对象分配到相应聚类中心实现聚类。所提算法克服了算法需要凭借经验参数和人工选取聚类中心的缺点。在人工数据集和真实数据集上的实验结果表明,与经典的具有噪声的基于密度的聚类方法(DBSCAN)、密度峰值聚类(DPC)算法以及拉普拉斯中心峰聚类(LPC)算法相比,ALPC具有自动确定聚类中心、无参数的特点,且具有较高的聚类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号