首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents a topology optimization method for the design of the fluid flow channel of cold plate, aiming to solve the problem of heat dissipation for power devices in active phased array antenna (APAA). The density-based topology optimization method is used in the topology optimization design of flow path, in which the conjugate heat transfer analysis is performed. In the numerical experiment, we use the central plane of the cold plate to make a two-dimensional topology optimization, and then the result of two-dimensional topology optimization was used to build the three-dimensional flow channel of cold plate. The results of simulation show that the optimized flow channel has a better ability of heat dissipation compared with the traditional S style flow channel, which provides important reference for engineering application.  相似文献   

2.
One of the most important components in micro-fluidic system is the micro-channel which involves complicated flow and transport process. This study presents micro-scale thermal fluid transport process inside a micro-channel with a height of 37 μm. The channel can be heated on the bottom wall and is integrated with arrays of pressure and temperature sensors which can be used to measure and determine the local heat transfer and pressure drop. A more simplified model with modification of Young’s Modulus from the experimental test is used to design and fabricate the arrays of pressure sensors. Both the pressure sensors and the channel wall use polymer materials which greatly simplify the fabrication process. In addition, the polymer materials have a very low thermal conductivity which significantly reduces the heat loss from the channel to the ambient that the local heat transfer can be accurately measured. The air flow in the micro-channel can readily become compressible even at a very low Reynolds number condition. Therefore, simultaneous measurement of both the local pressure drop and the temperature on the heated wall is required to determine the local heat transfer. Comparison of the local heat transfer for a compressible air flow in micro-channel is made with the theoretical prediction based on incompressible air flow in large-scale channel. The comparison has clarified many of the conflicting results among different works.  相似文献   

3.

This article explores the influence of thermal radiation on the flow and heat transfer of single-walled carbon nanotubes over both a convergent and divergent channel. Flow is induced due to a Darcy–Forchheimer medium. Further, the heat transfer mechanism is analyzed in the presence of a thermal radiation process. Guided by some appropriate similarity transformations, the fundamental PDEs are converted into a self-similar system of coupled non-linear ODEs. The findings are obtained with the help of the Runge–Kutta-45-based shooting method. The roles of the Reynolds number, porosity parameter, inertia coefficient parameter, Prandtl number and radiation parameter are presented graphically. Results are displayed and show that the rate of heat transfer is higher in a divergent channel as compared to a convergent channel.

  相似文献   

4.
Large eddy simulation of fully developed turbulent open channel flow with heat transfer is performed. The three-dimensional filtered Navier-Stokes and energy equations are numerically solved using a fractional-step method. Dynamic subgrid-scale (SGS) models for the turbulent SGS stress and heat flux are employed to close the governing equations. Two typical temperature boundary conditions, i.e., constant temperature and constant heat flux being maintained at the free surface, respectively, are used. The objective of this study is to explore the behavior of heat transfer in the turbulent open channel flow for different temperature boundary conditions and to examine the reliability of the LES technique for predicting turbulent heat transfer at the free surface, in particular, for high Prandtl number. Calculated parameters are chosen as the Prandtl number (Pr) from 1 up to 100, the Reynolds number (Reτ) 180 based on the wall friction velocity and the channel depth. Some typical quantities, including the mean velocity, temperature and their fluctuations, heat transfer coefficients, turbulent heat fluxes, and flow structures based on the velocity, vorticity and temperature fluctuations, are analyzed.  相似文献   

5.
Unsteady hydromagnetic Generalized Couette flow and heat transfer characteristics of a reactive variable viscosity incompressible electrically conducting third grade fluid in a channel with asymmetric convective cooling at the walls in the presence of uniform transverse magnetic field is studied. It is assumed that the chemical kinetics in the flow system is exothermic and the convective heat transfer at the channel surface with the surrounding environment follow the Newton’s law of cooling. The coupled nonlinear partial differential equations governing the problem are derived and solved numerically using an unconditionally stable and convergent semi-implicit finite difference scheme. Both numerical and graphical results are presented and physical aspects of the problem are discussed with respect to various parameters embedded in the system.  相似文献   

6.
The space–time conservation element–solution element (CE/SE) method is extended to two-dimensional viscous flow problems. The formulation is presented and discussed. The extended CE/SE method is applied to several 2D viscous flow problems, such as boundary layer flow, entrance of channel flow, backward facing step flow and cavity flow. The numerical results and their comparison with analytical result and experimental data are presented. The capability of this method for predicting viscous flow feature and heat transfer is demonstrated. Also the capability of the method to solve both high-speed flows and low-Mach number flows is demonstrated.  相似文献   

7.

The present article is dedicated to analyze the flow and heat transfer of carbon nanotube (CNT)-based nanofluids under the effects of velocity slip in a channel with non-parallel walls. Water is taken as a base fluid, and two forms of CNTs are used to perform the analysis, namely the single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs, respectively). Both the cases of narrowing and widening channel are discussed. The equations governing the flow are obtained by using an appropriate similarity transform. Numerical solution is obtained by using a well-known algorithm called Runge–Kutta–Fehlberg method. The influence of involved parameters on dimensionless velocity and temperature profiles is displayed graphically coupled with comprehensive discussions. Also, to verify the numerical results, a comparative analysis is carried out that ensures the authenticity of the results. Variation of skin friction coefficient and the rate of heat transfer at the walls are also performed. Some already existing solutions of the particular cases of the same problem are also verified as the special cases of the solutions obtained here.

  相似文献   

8.
Although many investigations on elastic turbulence have been conducted in recent years, two major research topics still call for in-depth mechanistic investigations. Specifically, one is heat transfer performance affected by elastic turbulence; the other is so-called high Weissenberg number problem (HWNP) in numerical simulation of viscoelastic fluid flow. Taking these two topics into account simultaneously, the coupled problem becomes heat transfer characteristic of viscoelastic fluid in elastic turbulence at high Weissenberg number (Wi) and very low Reynolds number (Re). In this work, we implement numerical simulations by embedding log-conformation reformulation algorithm into the open-source software OpenFOAM. The heat transfer process of viscoelastic fluid flow in a three-dimensional (3D) curvy channel is simulated over a wide range of Wi. For the first time, significant heat transfer enhancement induced by elastic turbulence in a curvy channel at high Wi was identified numerically. When Wi is above the critical value of O(1), the heat transfer performance is found to be dramatically improved by elastic turbulence and then approaches a saturation. From the transient analysis of flow motions in the axial and cross sections, it can be seen that the flow twists and wiggles in the curvy channel and the field synergy effect of viscoelastic fluid flow becomes more intensive than that of Newtonian fluid flow. These effects give rise to the extremely irregular flow motions in the cross section and consequently lead to heat transfer enhancement.  相似文献   

9.
Direct numerical simulation (DNS) has been carried out to investigate the effect of weak rarefaction on turbulent gas flow and heat transfer characteristics in microchannel. The Reynolds number based on the friction velocity and the channel half width is 150. Grid number is 64 × 128 × 64. Fractional time-step method is employed for the unsteady Navier–Stokes equations, and the governing equations are discretized with finite difference method. Statistical quantities such as turbulent intensity, Reynolds shear stress, turbulent heat flux and temperature variance are obtained under various Knudsen number from 0 to 0.05. The results show that rarefaction can influence the turbulent flow and heat transfer statistics. The streamwise mean velocity and temperature increase with increase of Kn number. In the near-wall-region rarefaction can increase the turbulent intensities and temperature variance. The effects of rarefaction on Reynolds shear stress and wall-normal heat flux are presented. The instantaneous velocity fluctuations in the vicinity of the wall are visualized and the influence of Kn number on the flow structure is discussed.  相似文献   

10.
We investigate the problem of mixed convection heat and mass transfer through a vertical wavy channel with porous medium. The flow is generated by the periodic thermal waves prescribed at the wavy walls of the channel. The equations of momentum energy and concentration are solved subject to a set of appropriate boundary conditions by assuming that the solution consists of a mean part and a perturbed part. The effects of various pertinent parameters on flow, heat and mass transfer characteristics are discussed numerically and explained graphically.  相似文献   

11.
为分析汽车空调平流式冷凝器的换热、流动性能,假设制冷剂沿管长方向做一维流动,空气侧流动视为零维流动,忽略制冷剂加速压降,对制冷剂两相区采用均相模型.使用AMESim建立平流式冷凝器仿真模型,并通过与试验对比验证模型的准确性.改变冷凝器结构参数,分析对冷凝器的性能影响,发现合理的制冷剂回路流程布置可以改善平流式冷凝器性能;增加流程数可以增加换热量,但是压降也会增大;制冷剂侧总横截面积相等时,微通道数目增加,换热量增加;空气速度较小时,减小翅片间距可以增加换热量.  相似文献   

12.
A manifold microchannel heat sink integrated with a high efficient copper heat spreader is presented. A series analysis of three-dimensional fluid flow and heat transfer performance in this mirochannel heat sink and conventional structure are performed by CFX commercial software package. The temperature difference along the flow direction in the new microchannel heat sink is less than that of the conventional microchannel heat sink due to effect of the transverse channel arrays. The maximum heat flux input of the new microchannel heat sink increases 75% more than the conventional structure with the flow rate of 1 m/s. The new design has better heat transfer characteristics than conventional one for the full range of flow rates considered.  相似文献   

13.
Of concern in the paper is a study of steady incompressible viscoelastic and electrically conducting fluid flow and heat transfer in a parallel plate channel with stretching walls in the presence of a magnetic field applied externally. The flow is considered to be governed by Walter’s liquid B fluid. The problem is solved by developing a suitable numerical method. The results are found to be in good agreement with those of earlier investigations reported in existing scientific literatures. The study reveals that a back flow occurs near the central line of the channel due to the stretching walls and further that this flow reversal can be stopped by applying a strong external magnetic field. The study also shows that with the increase in the strength of the magnetic field, the fluid velocity decreases but the temperature increases. Thus the study bears potential applications in the study of the haemodynamic flow of blood in the cardiovascular system when subjected to an external magnetic field.  相似文献   

14.

The flow of a radiative and electrically conducting micropolar nanofluid inside a porous channel is investigated. After implementing the similarity transformations, the partial differential equations representing the radiative flow are reduced to a system of ordinary differential equations. The subsequent equations are solved by making use of a well-known analytical method called homotopy analysis method (HAM). The expressions concerning the velocity, microrotation, temperature, and nanoparticle concentration profiles are obtained. The radiation tends to drop the temperature profile for the fluid. The formulation for local Nusselt and Sherwood numbers is also presented. Tabular and graphical results highlighting the effects of different physical parameters are presented. Rate of heat transfer at the lower wall is seen to be increasing with higher values of the radiation parameter while a drop in heat transfer rate at the upper wall is observed. Same problem has been solved by implementing the numerical procedure called the Runge–Kutta method. A comparison between the HAM, numerical and already existing results has also been made.

  相似文献   

15.
为了获得良好的数值模拟方法预测带横流、旋流冲击射流的流动换热特点,采用SST湍流模型对带横流、旋流冲击射流的流动换热特性进行了三维数值研究,并利用热电偶温度测试装置对冲击靶面局部换热系数分布进行了实验研究和验证.研究结果表明:横流使得靶面换热效果明显降低;横向出流使得靶面换热系数分布均匀化,尤其是在高雷诺数下更为明显.计算结果与实验特征是基本吻合的,所用的数值模拟方法能较为成功的预测带横流、旋流冲击射流的流动换热特性.  相似文献   

16.
One of the most important components in a microfluidic system is the microchannel which involves complicated flow and transport process. This work presents microscale thermal fluid transport process inside a microchannel with a height of 37 μm. The channel can be heated on the bottom wall and is integrated with arrays of pressure and temperature sensors which can be used to measure and determine the local heat transfer and pressure drop. A more simplified model with modification of Young’s Modulus from the experimental test is used to design and fabricate the arrays of pressure sensors. Both the pressure sensors and the channel wall use polymer materials which greatly simplifies the fabrication process. In addition, the polymer materials have a very low thermal conductivity which significantly reduces the heat loss from the channel to the ambient that the local heat transfer can be accurately measured. The airflow in the microchannel can readily become compressible even at a very low Reynolds number condition. Therefore, simultaneous measurement of both the local pressure drop and the temperature on the heated wall are required to determine the local heat transfer. Comparison of the local heat transfer for a compressible airflow in microchannel is made with the theoretical prediction based on incompressible airflow in large scale channel. The comparison has clarified many of the conflicting results among different works.  相似文献   

17.

In the present work, the characteristics of physical model unsteady nanofluid flow and heat transfer in an asymmetric porous channel are analyzed numerically using wavelet collocation method. Using similarity transformation, unsteady two-dimensional flow model of nanofluid in a porous channel through expanding or contracting walls has been transformed into a system of nonlinear ordinary differential equations (ODEs). Then, the obtained nonlinear system of ODEs is solved via wavelet collocation method. The effect of various emerging parameters, such as nanoparticle volume fraction, Reynolds number (Re), and expansion ratio have been analyzed on velocity and temperature profiles. Numerical results have been presented in form of figures and tables. For some special cases, the obtained numerical results are compared with exact one and found that the results are good in agreement with exact solutions.

  相似文献   

18.
Thermo transfer type MEMS (Micro Electro Mechanical System) based micro flow sensing device have promising potential to solve the limitation of implantable arterial blood flow rate monitoring. The present paper emphasizes on modeling and simulation of MEMS based micro flow sensing device, which will be capable of implantable arterial blood flow rate measurement. It describes the basic design and model architecture of thermal type micro flow sensor. A pair of thin film micro heaters is designed through MEMS micro machining process and simulated using CoventorWare; a finite element based numerical code. A rectangular cross section micro channel has been modeled where in micro heater and thermal sensors are embedded using the same CoventorWare tools. Some promising and interesting results of thermal dissipation depending upon very small amount of flow rate through the micro channel are investigated. It is observed that measuring the variation of temperature difference between downstream and upstream, the variation of fluid flow rate in the micro channel can be measured. The numerical simulation results also shows that the temperature distribution profile of the heated surface depends upon microfluidic flow rate i.e. convective heat transfer is directly proportional to the microfluidic flow rate on the surface of the insulating membrane. The simplified analytical model of the thermo transfer type flow sensor is presented and verified by simulation results, which are very promising for application in arterial blood flow rate measuring in implantable micro devices for continuous monitoring of cardiac output.  相似文献   

19.
The impact of incomplete surface accommodation on non-equilibrium heat transfer in a lid-driven cavity is evaluated by a parallel direct simulation Monte Carlo method. A two-dimensional partitioning technique has been employed to parallelize the code and its parallel performance is assessed. The computed results indicate that incomplete surface accommodation significantly impacts all aspects of flow and heat transfer in the cavity like the vortex center, wall heat flux rates, and the heat transfer mechanism itself. In particular, a counter-gradient heat flux pattern exists when the flow is in a non-equilibrium state, under which thermal energy is transferred from a cold region to a hot region. However, the gaseous heat transfer process changes with any increase in incomplete surface accommodation, significantly affecting the direction of heat transfer.  相似文献   

20.
This article describes a novel immersed boundary procedure for computing the flow and heat transfer problems with moving and complex boundary. Although the immersed boundary techniques have been successfully implemented to these flow and heat simulations, a frequently encountered drawback of this method is the relatively low accuracy proximate to the boundary due to the spreading of forcing function or the interpolation scheme. In this study, we propose a moving-grid process under the arbitrary Lagrangian-Eulerian framework to reduce the numerical diffusion near the immersed boundary. The incompressible Navier-Stokes equations are discretized spatially using unstructured finite element method, and advanced temporally by an operator-splitting scheme. The methodology is validated by the simulations of flow induced by an oscillating cylinder in a free stream. The capability of the proposed method is further demonstrated by good predictions of flow passing the rotating fan in a channel and also flow driven by two independent rotating fans in a circular cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号