首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multi‐input multi‐output (MIMO) FWRBF‐ARX model, which adopts radial basis function (RBF) neural networks with function‐type weights (FWRBF) to approximate the coefficients of the state‐dependent AutoRegressive model with eXogenous input variables (SD‐ARX), is utilized for describing the dynamics of a coupled tanks liquid system. Based on local linearization information of the MIMO FWRBF‐ARX model, a predictive control strategy is proposed. In the algorithm, the control actions of the model predictive control (MPC) are calculated based on the local linearization of the MIMO FWRBF‐ARX model at current working point. Real‐time control experiments are carried out on the coupled tanks liquid system. The detailed comparative experiments demonstrate the feasibility and effectiveness of the proposed modeling and model‐based control strategy for the coupled tanks plant.  相似文献   

2.
The prediction of dynamic behavior of the nonlinear time‐varying process plays an important role in predictive control applications. Although neural network algorithms have been intensively researched in modeling and controlling nonlinear systems in recent years, most of them mainly focused on the static dynamics. In this paper, a variable‐structure gradient radial basis function (RBF) network is implemented for nonlinear real‐time model predictive control, which is achieved by the proposed gradient orthogonal model selection (GOMS) algorithm. By learning the gradient message of real‐time updated data in a sling window, the structure and the connecting parameters of the network can be adaptively adjusted to adapt to the time‐varying dynamics. The proposed algorithm is evaluated with Mackey‐Glass chaotic time series prediction. Moreover, the variable structure network achieved by GOMS algorithm is applied as a multi‐step predictor in a ship course‐tracking control study, results demonstrate the applicability and effectiveness of the proposed GOMS algorithm and the variable‐RBF‐network based predictive control strategy. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

3.
In the adaptive neural control design, since the number of hidden neurons is finite for real‐time applications, the approximation errors introduced by the neural network cannot be inevitable. To ensure the stability of the adaptive neural control system, a switching compensator is designed to dispel the approximation error. However, it will lead to substantial chattering in the control effort. In this paper, an adaptive dynamic sliding‐mode neural control (ADSNC) system composed of a neural controller and a fuzzy compensator is proposed to tackle this problem. The neural controller, using a radial basis function neural network, is the main controller and the fuzzy compensator is designed to eliminate the approximation error introduced by the neural controller. Moreover, a proportional‐integral‐type adaptation learning algorithm is developed based on the Lyapunov function; thus not only the system stability can be guaranteed but also the convergence of the tracking error and controller parameters can speed up. Finally, the proposed ADSNC system is implemented based on a field programmable gate array chip for low‐cost and high‐performance industrial applications and is applied to control a brushless DC (BLDC) motor to show its effectiveness. The experimental results demonstrate the proposed ADSNC scheme can achieve favorable control performance without encountering chattering phenomena. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
刘治  李春文 《自动化学报》2002,28(5):773-776
针对非线性离散时间系统的控制问题,提出了一种基于近似模型的多层模糊CMAC 自适应控制方法.采用多层模糊CMAC对非线性函数进行逼近,并提出了一种新的神经网络学 习算法来保证权值的有界性.由于无需满足PE条件,所以文中提出的方法对于离散时间系统 的神经网络控制问题具有实际价值.  相似文献   

5.
An electro‐hydraulic servo system (EHSS) is a kind of system with the characteristics of time‐variant, serious nonlinearity, parameter and structural uncertainty, and uncertain load disturbance in most cases. These characteristics make it very difficult to realize highly accurate control by conventional methods. In order to solve the above problems, this paper introduces a recurrent type 2 fuzzy wavelet neural network to approximate the unknown nonlinear functions of the dynamic systems through tuning by the desired adaptive law. Based on the identification by recurrent type 2 fuzzy wavelet neural network, a L2 gain design method, combining gain adaptive variable sliding mode control with H infinity control, is proposed for load disturbance, thereby accommodating uncertainties that are the main factors affecting system stability and accuracy in EHSS. In this algorithm, a recurrent type 2 fuzzy wavelet neural network is employed to evaluate the unknown dynamic characteristics of the system and gain adaptive variable sliding mode control to compensate for evaluating errors, and H infinity control to suppress the effect on system by load disturbance. The experiment results show that the proposed system L2 gain design method can make the system exhibit strong robustness to parameter variation and load disturbance.  相似文献   

6.
Not only adaptive predictive control of switched systems is a computationally intensive procedure, it also involves various challenges in addressing the problems of robust stabilization and precise tracking. This study proposes new strategies to deal with the aforementioned issues (namely safe and precise control alongside with reduction of computational burden). The first contribution of this work is reduction of conservatism for described class of systems. Control of switched systems with undetectable switching signals is often conducted in worst case switching configuration to ensure robustness, which potentially results in conservative design. The issue of conservativeness is intensified in multi input-multi output (MIMO) dynamical systems due to increased dimensions. However, attaining a robust control scheme for all switching configurations while ensuring precise response is inherently paradoxical. To overcome this issue, this study proposes a new dual-mode algorithm where control modes corresponding to safety and precision are activated at appropriate stages of system response. This is conducted based on incorporation of an adaptive fuzzy-wavelet neural network identification scheme in predictive control of MIMO switched systems. However, as convergence of the adaptive algorithm to actual system is attained after a finite period of time, a safe-mode control algorithm is proposed to maintain quality of transient response in convergence period. In other words, the proposed algorithm operates in safe and precise control modes to ensure robust stability in the convergence period and non-conservative design in steady-state. Second major contribution of the work is reduction of calculation burden based on incorporation of a suboptimal control algorithm. To this end, we propose a predictive control scheme based on a suboptimal gradient-descent based controller, calculating feasible stabilizing inputs instead of optimal inputs. Effects of dynamical variations are incorporated in the model predictive control framework for increased compatibility with high-speed switching dynamics. Then, based on incorporation of dual-mode algorithm, precise steady-state performance is attained while preventing notable perturbations in dynamical discontinuities at switching.  相似文献   

7.
8.
Random transfer delays in network‐based control systems (NCSs) degrade the control performance and can even destabilize the control system. To address this problem, the adaptive dynamic matrix control (DMC) algorithm is proposed. The control algorithm is derived by applying the philosophy behind DMC to a discrete time‐delay model. A method to estimate the network‐induced delays is also presented to facilitate implementation of the control algorithm. Finally, an NCS platform based on the TrueTime simulator is constructed. With it, the adaptive DMC algorithm is compared with the conventional DMC algorithm under different network conditions. Simulation results show that the proposed adaptive DMC algorithm can respond to various network conditions adaptively and achieve better control performance for NCSs with random transfer delays.  相似文献   

9.
一种基于PSO的自适应神经网络预测控制   总被引:1,自引:0,他引:1  
针对非线性系统,提出了一种基于微粒群优化(PSO)的自适应神经网络预测控制方法.采用对角递归网络(DRNN)对非线性系统进行建模,并利用扩展卡尔曼滤波(EKF)递推估计算法在线计算网络模型参数的Jacobian矩阵以实现模型参数的自适应.利用PSO算法在线优化求解非线性系统的预测控制律,以克服传统基于梯度法的非线性规划方法求解预测控制律时对初始条件非常敏感的缺点.生化发酵过程的仿真结果表明,所提出的控制方法具有良好的跟踪能力和抗干扰能力.  相似文献   

10.
基于确定学习的机器人任务空间自适应神经网络控制   总被引:3,自引:0,他引:3  
吴玉香  王聪 《自动化学报》2013,39(6):806-815
针对产生回归轨迹的连续非线性动态系统, 确定学习可实现未知闭环系统动态的局部准确逼近. 基于确定学习理论, 本文使用径向基函数(Radial basis function, RBF)神经网络为机器人任务空间跟踪控制设计了一种新的自适应神经网络控制算法, 不仅实现了闭环系统所有信号的最终一致有界, 而且在稳定的控制过程中, 沿着回归跟踪轨迹实现了部分神经网络权值收敛到最优值以及未知闭环系统动态的局部准确逼近. 学过的知识以时不变且空间分布的方式表达、以常值神经网络权值的方式存储, 可以用来改进系统的控制性能, 也可以应用到后续相同或相似的控制任务中, 节约时间和能量. 最后, 用仿真说明了所设计控制算法的正确性和有效性.  相似文献   

11.
In this paper, we propose a new design method of discrete‐valued model predictive control for continuous‐time linear time‐invariant systems based on sum‐of‐absolute‐values (SOAV) optimization. The finite‐horizon discrete‐valued control design is formulated as an SOAV optimal control, which is an expansion of L1 optimal control. It is known that under the normality assumption, the SOAV optimal control exists and takes values in a fixed finite alphabet set if the initial state lies in a subset of the reachable set. In this paper, we analyze the existence and discreteness property for systems that do not necessarily satisfy the normality assumption. Then, we extend the finite‐horizon SOAV optimal control to infinite‐horizon model predictive control (MPC). We give sufficient conditions for the recursive feasibility and the stability of the MPC‐based feedback system in the presence of bounded noise. Simulation results show the effectiveness of the proposed method.  相似文献   

12.
In this article, a novel off‐policy cooperative game Q‐learning algorithm is proposed for achieving optimal tracking control of linear discrete‐time multiplayer systems suffering from exogenous dynamic disturbance. The key strategy, for the first time, is to integrate reinforcement learning, cooperative games with output regulation under the discrete‐time sampling framework for achieving data‐driven optimal tracking control and disturbance rejection. Without the information of state and input matrices of multiplayer systems, as well as the dynamics of exogenous disturbance and command generator, the coordination equilibrium solution and the steady‐state control laws are learned using data by a novel off‐policy Q‐learning approach, such that multiplayer systems have the capability of tolerating disturbance and follow the reference signal via the optimal approach. Moreover, the rigorous theoretical proofs of unbiasedness of coordination equilibrium solution and convergence of the proposed algorithm are presented. Simulation results are given to show the efficacy of the developed approach.  相似文献   

13.
A neural network on‐line modeling and controlling method (NNOMC) is proposed in this paper for multi‐variable control of wastewater treatment processes (WWTPs). According to the approximating character of the feedforward neural network (FNN), a modeling FNN is proposed to simulate and decouple WWTPs. Then, an FNN controller for multi‐variable control of WWTPs is designed. Moreover, the stability of the NNOMC method is proven in a general inference via the limitation of the learning rate of the FNN. Finally, this proposed NNOMC method is used in the international benchmark of WWTPs. The results show the NNOMC method owns both better approximating and controlling performance.  相似文献   

14.
基于即时学习的MIMO系统滑模预测控制方法   总被引:1,自引:0,他引:1  
针对MIMO非线性系统的控制问题,采用数据驱动的控制策略,将具有本质自适应能力的即时学习算法与具有强鲁棒性的滑模预测控制相结合,设计了一种基于即时学习的滑模预测(LL-SMPC)控制方法.该方法在在线局部建模的基础上,采用滑模预测控制律求取最优控制量,具有较强的自适应和抗干扰能力,并避免TDiophantine方程的求解,有效减少了计算量.通过仿真研究,验证了算法的有效性.  相似文献   

15.
A Neural Net Predictive Control for Telerobots with Time Delay   总被引:5,自引:0,他引:5  
This paper extends the Smith Predictor feedback control structure to unknown robotic systems in a rigorous fashion. A new recurrent neural net predictive control (RNNPC) strategy is proposed to deal with input and feedback time delays in telerobotic systems. The proposed control structure consists of a local linearized subsystem and a remote predictive controller. In the local linearized subsystem, a recurrent neural network (RNN) with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant. The remote controller is a modified Smith predictor for the local linearized subsystem which provides prediction and maintains the desirable tracking performance. Stability analysis is given in the sense of Lyapunov. The result is an adaptive compensation scheme for unknown telerobotic systems with time delays, uncertainties, and external disturbances. A simulation of a two-link robotic manipulator is provided to illustrate the effectiveness of the proposed control strategy.  相似文献   

16.
Making use of the neural network universal approximation ability, a nonlinear predictive control scheme is studied in this paper. On the basis of a uniform structure of simple recurrent neural networks, a one‐step neural predictive controller (OSNPC) is designed. The whole closed‐loop system's asymptotic stability and passivity are discussed, and stable conditions for the learning rate are determined based on the Lyapunov stability theory for the whole neural system. The effectiveness of OSNPC is verified via exhaustive simulations.  相似文献   

17.
In this paper, an adaptive control approach based on the multidimensional Taylor network (MTN) is proposed here for the real‐time tracking control of multiple‐input–multiple‐output (MIMO) time‐varying uncertain nonlinear systems with noises. Two MTNs are used to formulate the optimum control and adaptive filtering approaches. The feed‐forward MTN controller (MTNC) is developed to realize the precise tracking control. The closed‐loop errors between the filtered outputs and expected values are directly chosen as the MTNC's inputs. A valid initial value selection scheme for the weights of the MTNC, which can ensure the initial stability of adaptive process, is introduced. The proposed MTNC can update its weights online according to errors caused by system's uncertain factors, based on stable learning rate. The resilient backpropagation algorithm and the adaptive variable step size algorithm via linear reinforcement are utilized to update the MTNC's weights. The MTN filter (MTNF) is developed to eliminate measurement noises and other stochastic factors. The proposed adaptive MTN filtering system possesses the distinctive properties of the Lyapunov theory–based adaptive filtering system and MTN. Lyapunov function of the filtering errors between the measured values and MTNF's outputs is defined. By properly choosing the weights update law in the Lyapunov sense, the MTNF's outputs can asymptotically converge to the desired signals. The design is independent of the stochastic properties of the input disturbances. Simulation of the MTN‐based control is conducted to test the effectiveness of the presented results.  相似文献   

18.
In this paper, real‐time results for a novel continuous‐time adaptive tracking controller algorithm for nonlinear multiple input multiple output systems are presented. The control algorithm includes the combination of a recurrent high order neural network with block control transformation using a high order sliding modes technique as control law. A neural network is used to identify the dynamic plant behavior where a filtered error algorithm is used to train the neural identifier. A decentralized high order sliding mode, named the twisting algorithm, is used to design chattering‐reduced independent controllers to solve the trajectory tracking problem for a robot arm with three degrees of freedom. Stability analyses are given via a Lyapunov approach.  相似文献   

19.
基于混沌优化的非线性预测控制器   总被引:2,自引:2,他引:2  
针对非线性系统的控制问题,本文将神经网络辨识、混沌优化和预测控制思想有机结合,提出了一种新型非线性预测控制器.该控制器以神经网络作为预测模型,混沌优化算法作为滚动优化策略,避免了非线性预测控制中复杂的梯度计算和矩阵求逆问题.另外在训练神经网络过程中,采用了带混沌机制的自适应学习率的BP算法,以提高神经网络的收敛能力和收敛速度.仿真研究说明了该非线性预测控制器的有效性及实时性.  相似文献   

20.
This article focuses on the problem of adaptive finite‐time neural backstepping control for multi‐input and multi‐output nonlinear systems with time‐varying full‐state constraints and uncertainties. A tan‐type nonlinear mapping function is first proposed to convert the strict‐feedback system into a new pure‐feedback one without constraints. Neural networks are utilized to cope with unknown functions. To improve learning performance, a composite adaptive law is designed using tracking error and approximate error. A finite‐time convergent differentiator is adopted to avoid the problem of “explosion of complexity.” By theoretical analysis, all the signals of system are proved to be bounded, the outputs can track the desired signals in a finite time, and full‐state constraints are not transgressed. Finally, comparative simulations are offered to confirm the validity of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号