首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
We describe a general framework for learning perception-based navigational behaviors in autonomous mobile robots. A hierarchical behavior-based decomposition of the control architecture is used to facilitate efficient modular learning. Lower level reactive behaviors such as collision detection and obstacle avoidance are learned using a stochastic hill-climbing method while higher level goal-directed navigation is achieved using a self-organizing sparse distributed memory. The memory is initially trained by teleoperating the robot on a small number of paths within a given domain of interest. During training, the vectors in the sensory space as well as the motor space are continually adapted using a form of competitive learning to yield basis vectors that efficiently span the sensorimotor space. After training, the robot navigates from arbitrary locations to a desired goal location using motor output vectors computed by a saliency-based weighted averaging scheme. The pervasive problem of perceptual aliasing in finite-order Markovian environments is handled by allowing both current as well as the set of immediately preceding perceptual inputs to predict the motor output vector for the current time instant. We describe experimental and simulation results obtained using a mobile robot equipped with bump sensors, photosensors and infrared receivers, navigating within an enclosed obstacle-ridden arena. The results indicate that the method performs successfully in a number of navigational tasks exhibiting varying degrees of perceptual aliasing.  相似文献   

2.
Active Learning for Vision-Based Robot Grasping   总被引:1,自引:0,他引:1  
Salganicoff  Marcos  Ungar  Lyle H.  Bajcsy  Ruzena 《Machine Learning》1996,23(2-3):251-278
Reliable vision-based grasping has proved elusive outside of controlled environments. One approach towards building more flexible and domain-independent robot grasping systems is to employ learning to adapt the robot's perceptual and motor system to the task. However, one pitfall in robot perceptual and motor learning is that the cost of gathering the learning set may be unacceptably high. Active learning algorithms address this shortcoming by intelligently selecting actions so as to decrease the number of examples necessary to achieve good performance and also avoid separate training and execution phases, leading to higher autonomy. We describe the IE-ID3 algorithm, which extends the Interval Estimation (IE) active learning approach from discrete to real-valued learning domains by combining IE with a classification tree learning algorithm (ID-3). We present a robot system which rapidly learns to select the grasp approach directions using IE-ID3 given simplified superquadric shape approximations of objects. Initial results on a small set of objects show that a robot with a laser scanner system can rapidly learn to pick up new objects, and simulation studies show the superiority of the active learning approach for a simulated grasping task using larger sets of objects. Extensions of the approach and future areas of research incorporating more sophisticated perceptual and action representation are discussed  相似文献   

3.
We describe motor and perceptual behaviors that have proven useful for indoor navigation of an autonomous mobile robot. These behaviors take advantage of the large amount of structure that characterizes many indoor, office-like environments. Based on pre-existing structural landmarks, a mobile robot has the ability to explore, map, and navigate one among several office buildings sharing similar structural features, while coping with slow environment variations and local dynamics. The mobile robot develops and maintains an internal spatial representation of the environment in terms of a topological and qualitative map. The types of structural features suitable as navigation landmarks largely depend upon the available sensors. Adequate navigation performance is achieved by subdividing perception and navigation into a number of behaviors layered upon a multi-threaded real-time control architecture.  相似文献   

4.
The development of robots that learn from experience is a relentless challenge confronting artificial intelligence today. This paper describes a robot learning method which enables a mobile robot to simultaneously acquire the ability to avoid objects, follow walls, seek goals and control its velocity as a result of interacting with the environment without human assistance. The robot acquires these behaviors by learning how fast it should move along predefined trajectories with respect to the current state of the input vector. This enables the robot to perform object avoidance, wall following and goal seeking behaviors by choosing to follow fast trajectories near: the forward direction, the closest object or the goal location respectively. Learning trajectory velocities can be done relatively quickly because the required knowledge can be obtained from the robot's interactions with the environment without incurring the credit assignment problem. We provide experimental results to verify our robot learning method by using a mobile robot to simultaneously acquire all three behaviors.  相似文献   

5.
This article is concerned with an artificial neural system for a mobile robot reactive navigation in an unknown, cluttered environment. Reactive navigation is a process of immediately choosing locomotion actions in response to measured spatial situations, while no planning occurs. A task of a presented system is to provide a steering angle signal letting a robot reach a goal while avoiding collisions with obstacles. Basic reactive navigation methods are briefly characterized, special attention is paid to a neural approach to the considered problem. The authors describe the system's architecture and important details of the algorithm. The main parts of the system are: the Fuzzy ART neural self-organizing classifier, performing a perceptual space partitioning, and a neural associative memory, memorizing the system's experience and superposing influences of different behaviors. Tests show that the learning process, starting from zero, is efficient, despite some initial fluctuations of its effectiveness.  相似文献   

6.
Shaping robot behavior using principles from instrumental conditioning   总被引:2,自引:0,他引:2  
Shaping by successive approximations is an important animal training technique in which behavior is gradually adjusted in response to strategically timed reinforcements. We describe a computational model of this shaping process and its implementation on a mobile robot. Innate behaviors in our model are sequences of actions and enabling conditions, and shaping is a behavior editing process realized by multiple editing mechanisms. The model replicates some fundamental phenomena associated with instrumental learning in animals, and allows an RWI B21 robot to learn several distinct tasks derived from the same innate behavior.  相似文献   

7.
This paper presents a new approach to the intelligent navigation of a mobile robot. The hybrid control architecture described combines properties of purely reactive and behaviour-based systems, providing the ability both to learn automatically behaviours from inception, and to capture these in a distributed hierarchy of decision tree networks. The robot is first trained in the simplest world which has no obstacles, and is then trained in successively more complex worlds, using the knowledge acquired in the previous worlds. Each world representing the perceptual space is thus directly mapped on a unique rule layer which represents in turn the robot action space encoded in a distinct decision tree. A major advantage of the current implementation, compared with the previous work, is that the generated rules are easily understood by human users. The paper demonstrates that the proposed behavioural decomposition approach provides efficient management of complex knowledge, and that the learning mechanism is able to cope with noise and uncertainty in sensory data.  相似文献   

8.
Previous research has shown that sensor–motor tasks in mobile robotics applications can be modelled automatically, using NARMAX system identification, where the sensory perception of the robot is mapped to the desired motor commands using non-linear polynomial functions, resulting in a tight coupling between sensing and acting — the robot responds directly to the sensor stimuli without having internal states or memory.However, competences such as for instance sequences of actions, where actions depend on each other, require memory and thus a representation of state. In these cases a simple direct link between sensory perception and the motor commands may not be enough to accomplish the desired tasks. The contribution of this paper to knowledge is to show how fundamental, simple NARMAX models of behaviour can be used in a bootstrapping process to generate complex behaviours that were so far beyond reach.We argue that as the complexity of the task increases, it is important to estimate the current state of the robot and integrate this information into the system identification process. To achieve this we propose a novel method which relates distinctive locations in the environment to the state of the robot, using an unsupervised clustering algorithm. Once we estimate the current state of the robot accurately, we combine the state information with the perception of the robot through a bootstrapping method to generate more complex robot tasks: We obtain a polynomial model which models the complex task as a function of predefined low level sensor–motor controllers and raw sensory data.The proposed method has been used to teach Scitos G5 mobile robots a number of complex tasks, such as advanced obstacle avoidance, or complex route learning.  相似文献   

9.
Learning landmark triples by experimentation   总被引:1,自引:0,他引:1  
This article describes a method for learning a set of landmarks suitable for place navigation. The approach is novel in that it exploits the ability of a robot to learn through active perception in the task environment, similar to the learning by experimentation technique developed for LEX (Mitchell et al., 1990). The proposed strategy uses heuristics to select and rank candidate triples, then generates test cases to confirm that the best triple is sufficient. The method supports the use of multiple sensors with different computational and energy costs, where a utility function captures the tradeoff between navigational performance ranking and cost.

Over 100 data points were collected on a mobile robot using a laser barcode reader and computer vision to identify landmarks. The results indicated that active perception and experimentation identified triples with better navigational properties. Furthermore, the learning process is proactive: it was shown to prevent the robot from learning a triple which was not visible over the entire navigational space and/or was not sufficient in practice.  相似文献   


10.
Visual motor control of a 7 DOF robot manipulator using a fuzzy SOM network   总被引:1,自引:0,他引:1  
A fuzzy self-organizing map (SOM) network is proposed in this paper for visual motor control of a 7 degrees of freedom (DOF) robot manipulator. The inverse kinematic map from the image plane to joint angle space of a redundant manipulator is highly nonlinear and ill-posed in the sense that a typical end-effector position is associated with several joint angle vectors. In the proposed approach, the robot workspace in image plane is discretized into a number of fuzzy regions whose center locations and fuzzy membership values are determined using a Fuzzy C-Mean (FCM) clustering algorithm. SOM network then learns the inverse kinematics by on-line by associating a local linear map for each cluster. A novel learning algorithm has been proposed to make the robot manipulator to reach a target position. Any arbitrary level of accuracy can be achieved with a number of fine movements of the manipulator tip. These fine movements depend on the error between the target position and the current manipulator position. In particular, the fuzzy model is found to be better as compared to Kohonen self-organizing map (KSOM) based learning scheme proposed for visual motor control. Like existing KSOM learning schemes, the proposed scheme leads to a unique inverse kinematic solution even for a redundant manipulator. The proposed algorithms have been successfully implemented in real-time on a 7 DOF PowerCube robot manipulator, and results are found to concur with the theoretical findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号