首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
In this paper, we study the problem of modeling and controlling leader-follower formation of mobile robots. First, a novel kinematics model for leader-follower robot formation is formulated based on the relative motion states between the robots and the local motion of the follower robot. Using this model, the relative centripetal and Coriolis accelerations between robots are computed directly by measuring the relative and local motion sensors, and utilized to linearize the nonlinear system equations. A formation controller, consisting of a feedback linearization part and a sliding mode compensator, is designed to stabilize the overall system including the internal dynamics. The control gains are determined by solving a robustness inequality and assumed to satisfy a cooperative protocol that guarantees the stability of the zero dynamics of the formation system. The proposed controller generates the commanded acceleration for the follower robot and makes the formation control system robust to the effect of unmeasured acceleration of the leader robot. Furthermore, a robust adaptive controller is developed to deal with parametric uncertainty in the system. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.  相似文献   

2.
This paper studies the fully distributed formation control problem of multi-robot systems without global position measurements subject to unknown longitudinal slippage constraints.It is difficult for robots to obtain accurate and stable global position information in many cases,such as when indoors,tunnels and any other environments where GPS(global positioning system)is denied,thus it is meaningful to overcome the dependence on global position information.Additionally,unknown slippage,which is hard to avoid for wheeled robots due to the existence of ice,sand,or muddy roads,can not only affect the control performance of wheeled robot,but also limits the application scene of wheeled mobile robots.To solve both problems,a fully distributed finite time state observer which does not require any global position information is proposed,such that each follower robot can estimate the leader’s states within finite time.The distributed adaptive controllers are further designed for each follower robot such that the desired formation can be achieved while overcoming the effect of unknown slippage.Finally,the effectiveness of the proposed observer and control laws are verified by simulation results.  相似文献   

3.
Artificial moment method for swarm robot formation control   总被引:3,自引:0,他引:3  
The purpose of this paper is to develop a general control method for swarm robot formation control. Firstly, an attraction-segment leader-follower formation graph is presented for formation representations. The model of swarm robot systems is described. According to the results and two kinds of artificial moments defined as leader-attraction moment and follower-attraction moment, a novel artificial moment method is proposed for swarm robot formation control. The principle of the method is introduced and the motion controller of robots is designed. Finally, the stability of the formation control system is proved. The simulations show that both the formation representation graph and the formation control method are valid and feasible.  相似文献   

4.
This paper investigates the active fault tolerant cooperative control problem for a team of wheeled mobile robots whose actuators are subjected to partial or severe faults during the team mission. The cooperative robots network only requires the interaction between local neighbors over the undirected graph and does not assume the existence of leaders in the network. We assume that the communication exists all the time during the mission. To avoid the system''s deterioration in the event of a fault, a set of extended Kalman filters (EKFs) are employed to monitor the actuators'' behavior for each robot. Then, based on the online information given by the EKFs, a reconfigurable sliding mode control is proposed to take an appropriate action to accommodate that fault. In this research study, two types of faults are considered. The first type is a partial actuator fault in which the faulty actuator responds to a partial of its control input, but still has the capability to continue the mission when the control law is reconfigured. In addition, the controllers of the remaining healthy robots are reconfigured simultaneously to move within the same capability of the faulty one. The second type is a severe actuator fault in which the faulty actuator is subjected to a large loss of its control input, and that lead the exclusion of that faulty robot from the team formation. Consequently, the remaining healthy robots update their reference trajectories and form a new formation shape to achieve the rest of the team mission.  相似文献   

5.
Biologically Inspired Behaviour Design for Autonomous Robotic Fish   总被引:1,自引:0,他引:1  
Behaviour-based approach plays a key role for mobile robots to operate safely in unknown or dynamically changing environments. We have developed a hybrid control architecture for our autonomous robotic fish that consists of three layers: cognitive, behaviour and swim pattern. In this paper, we describe some main design issues of the behaviour layer, which is the centre of the layered control architecture of our robotic fish. Fuzzy logic control (FLC) is adopted here to design individual behaviours. Simulation and real experiments are presented to show the feasibility and the performance of the designed behaviour layer.  相似文献   

6.
Li J.Shi W.Li B. 《智能系统学报》2012,(收录汇总):1233-1242
In order to reduce the influence of initial position on the convergence time of formation systems, a fixed-time formation control method is presented in this paper for multimobile robot systems. Based on the leader-following struc-ture, the formation control problem of n robots is decomposed into the tracking control problem between (n – 1) pairs of followers and their designated leader. In this structure, a fixed-time controller based on backstepping is designed to maintain the desired distance and angle between the followers and leader. Furthermore, the stability of the formation control system is analyzed using the Lyapunov stability theory, and the effectiveness of this method is verified through simulation and experimental results. © 2023, Editorial Department of CAAI Transactions on Intelligent Systems. All rights reserved.  相似文献   

7.
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs) is subject to nonholonomic constraints, system uncertainties, and external disturbances. This paper proposes a barrier function-based adaptive sliding mode control(BFASMC) method to provide high-precision, fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a pre...  相似文献   

8.
This paper considers the problems of formation and obstacle avoidance for multiagent systems.The objective is to design a term of agents that can reach a desired formation while avoiding collision with obstacles.To reduce the amount of information interaction between agents and target,we adopt the leader-follower formation strategy.By using the receding horizon control (RHC),an optimal problem is formulated in terms of cost minimization under constraints.Information on obstacles is incorporated online as sensed in a limited sensing range.The communication requirements between agents are that the followers should obtain the previous optimal control trajectory of the leader to each update time.The stability is guaranteed by adding a terminal-state penalty to the cost function and a terminal-state region to optimal problem.Finally,simulation studies are provided to verify the effectiveness of the proposed approach.  相似文献   

9.
A new formation navigation approach derived from multi-robots cooperative online FastSLAM is proposed. In this approach,the leader and follower robots are defined.The posteriori estimation of the leader robot state is treated as a relative reference for all follower robots to correct their state priori estimations.The control volume of individual follower will be achieved from the results of the corrected estimation.All robots are observed as landmarks with known associations by the others and are considered in their landmarks updating.By the method,the errors of the robot posterior estimations are reduced and the formation is well kept.The simulation and physical experiment results show that the multi-robots relative localization accuracy is improved and the formation navigation control is more stable and efficient than normal leader-following strategy.The algorithm is easy in implementation.  相似文献   

10.
There is an emerging recognition of the importance of utilizing contextual informa tion in authorization decisions. Controlling access to resources in the field of wireless and mobile networking require the definition of a formal model for access control with supporting spatial context. However, traditional RBAC model does not specify these spatial requirements. In this paper, we extend the existing RBAC model and propose the SC-RBAC model that utilizes spatial and location-based information in security policy definitions. The concept of spatial role is presented, and the role is assigned a logical location domain to specify the spatial boundary. Roles are activated based on the current physical position of the user which obtained from a specific mobile terminal. We then extend SC-RBAC to deal with hierarchies, modeling permission, user and activation inheritance, and prove that the hierarchical spatial roles are capable of constructing a lattice which is a means for articulate multi-level security policy and more suitable to control the information flow security for safety-critical location-aware information systems. Next, constrained SC-RBAC allows express various spatial separations of duty constraints, location-based cardinality and temporal constraints for specify fine-grained spatial semantics that are typical in location-aware systems. Finally, we introduce 9 invariants for the constrained SC-RBAC and its basic security theorem is proven. The constrained SC-RBAC provides the foundation for applications in need of the constrained spatial context aware access control.  相似文献   

11.
李苗    刘忠信    陈增强   《智能系统学报》2017,12(1):88-94
本文研究了多非完整移动机器人编队控制算法。在该算法中,参考轨迹被视为虚拟领导者,只有部分机器人可以接收到领导者信息,机器人之间只能进行局部信息交互。利用坐标变换将机器人系统的编队问题转化为变换后系统的一致性问题,在持续激励的条件下,设计了一种分布式控制算法,通过图论与Lyapunov 理论证明了该分布式控制算法可以使移动机器人队伍指数收敛于期望队形,并使队形的几何中心指数收敛到参考轨迹。最后,数值仿真验证了该控制算法的有效性。  相似文献   

12.
In this paper, the distributed formation control problem for multiple nonholonomic mobile robots using consensus-based approach is considered. A transformation is given to convert the formation control problem for multiple nonholonomic mobile robots into a state consensus problem. Distributed control laws are developed for achieving the formation control objectives: a group of nonholonomic mobile robots at least exponentially converge to a desired geometric pattern with its centroid moving along the specified reference trajectory. Rigorous proofs are provided by using graph, matrix , and Lyapunov theories. Simulations are also given to verify the effectiveness of the theoretical results.  相似文献   

13.
为描述机器人队列的运动过程,从相对位姿的角度定义了多移动机器人的队形模型.在传统leader-following队形控制的基础上,引入切换控制思想,每对领路机器人与跟随机器人之间设计3个控制器,对应跟随机器人中轴线上两参考点分别设计两个运动子控制器,控制领路机器人与跟随机器人之间的相对位姿;切换控制器根据系统处于平衡状态时,跟随机器人线速度的符号切换运动控制器,从而保证队列收敛到目标队形.仿真实验结果表明,机器人队列表现出良好的整体一致性,队列运动更加平稳.  相似文献   

14.
This paper deals with the navigation in formation of a group of mobile robots. A set of virtual targets (points) forms a virtual structure of the same shape as the desired formation. Hence, to join and to remain in this formation, each robot has only to track one of these targets. In order to track the chosen target, it has to be attainable by the robot despite its kinematic constraints. This paper studies then the maximum allowed dynamic of the virtual structure according to the kinematic constraints of the robots. Both linear and angular velocities of the targets are constrained. Moreover, depending on these velocities, some relative positions (targets) in the formation become unattainable. These positions are also defined. A stable control law allows us to attain the generated set-points. Simulation and experimental results validate the proposed contributions.  相似文献   

15.
针对多机器人在未知环境下的编队控制问题,提出了一种基于双移动信标的多机器人编队算法.该方法在以两个移动信标机器人为领航机器人的基础之上,设计了基于超宽带测距技术的多机器人定位模型,通过摔制从机器人的位姿状态,实现多机器人编队控制,并且设计了多传感器数据融合算法,有效提高多机器人编队的精度.该方法解决了多机器人在未知环境中的编队控制问题,提高了多机器人编队控制的精度.仿真结果表明了该方法的可行性和有效性.  相似文献   

16.
A new approach to coordination of multiple mobile robots is presented in this paper. The approach relies on the notion of constraint forces which are used in the development of the dynamics of a system of constrained particles with inertia. A familiar class of dynamic, nonholonomic robots are considered. The goal is to design a distributed coordination control algorithm for each robot in the group to achieve, and maintain, a particular formation while ensuring navigation of the group. The theory of constraint forces is used to generate a stable control algorithm for each mobile robot that will achieve, and maintain, a given formation. The advantage of the proposed method is that the formation keeping forces (constraint forces) cancel only those applied forces which act against the constraints. Another feature of the proposed distributed control algorithm is that it allows to add/remove other mobile robots into/from the formation gracefully with simple modifications of the control input. Further, the algorithm is scalable. To corroborate the theoretical approach, simulation results on a group of six robots are shown and discussed.  相似文献   

17.
This paper investigates the leader–follower formation control problem for nonholonomic mobile robots based on a bioinspired neurodynamics based approach. The trajectory tracking control for a single nonholonomic mobile robot is extended to the formation control for multiple nonholonomic mobile robots based on the backstepping technique, in which the follower can track its real-time leader by the proposed kinematic controller. An auxiliary angular velocity control law is proposed to guarantee the global asymptotic stability of the followers and to further guarantee the local asymptotic stability of the entire formation. Also a bioinspired neurodynamics based approach is further developed to solve the impractical velocity jumps problem. The rigorous proofs are given by using Lyapunov theory. Simulations are also given to verify the effectiveness of the theoretical results.  相似文献   

18.
In this study, a new finite-time synchronised approach is developed for multiple mobile robots formation control based on terminal sliding mode control principle and system synchronisation theory. Associated stability analysis is presented to lay a foundation for analytical understanding in generic theoretical aspects and safe operation for real systems. An illustrative example of multiple mobile robots formation control is bench tested to validate the effectiveness of the proposed approach.  相似文献   

19.
多移动机器人避障编队控制   总被引:3,自引:1,他引:2  
研究了非完整移动机器人群的避障编队问题. 在次优化控制基础上, 通过对每个交互机器人求解指标函数存在耦合的优化问题提出了两种算法. 在终端惩罚项中加入了势场函数并且构造出相应的终端约束集. 关于系统稳定性及安全性进行了讨论. 仿真实例说明了所提算法的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号