首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced manufacturing technologies, such as CNC machines, require significant investments, but also offer new capabilities to the manufacturers. One of the important capabilities of a CNC machine is the controllable processing times. By using this capability, the due date requirements of customers can be satisfied much more effectively. Processing times of the jobs on a CNC machine can be easily controlled via machining conditions such that they can be increased or decreased at the expense of tooling cost. Since scheduling decisions are very sensitive to the processing times, we solve the process planning and scheduling problems simultaneously. In this study, we consider the problem of scheduling a set of jobs on a single CNC machine to minimize the sum of total weighted tardiness, tooling and machining costs. We formulated the joint problem, which is NP-hard since the total weighted tardiness problem (with fixed processing times) is strongly NP-hard alone, as a nonlinear mixed integer program. We proposed a DP-based heuristic to solve the problem for a given sequence and designed a local search algorithm that uses it as a base heuristic.  相似文献   

2.
The concept of time-cost trade-off is commonly considered in PERT/CPM, but it is seldom considered in the scheduling area. Such concept implies that the processing times of jobs are controllable by increasing or decreasing the available resources, such as manpower and equipment. In this paper, we focus on the single machine total tardiness problem with controllable processing times. First, a mixed-integer programming (MIP) model is formulated to find the optimal solution. Then, we propose both a linear programming model and a net benefit of compression (NBC) algorithm to obtain a set of optimal amounts of compression for a given sequence. To solve medium- to large-size problem instances, we develop a heuristic based on the NBC algorithm. To verify the proposed heuristic, the MIP model is used as a comparison for small-size problem instances, whereas for medium- to large-size instances the variable neighborhood search, a useful local search method, is employed. Computational results show that the proposed heuristic has a good performance.  相似文献   

3.
The problem of scheduling N jobs on M uniform parallel machines is studied. The objective is to minimize the mean tardiness or the weighted sum of tardiness with weights based on jobs, on periods or both. For the mean tardiness criteria in the preemptive case, this problem is NP-hard but good solutions can be calculated with a transportation problem algorithm. In the nonpreemptive case the problem is therefore NP-hard, except for the cases with equal job processing times or with job due dates equal to job processing times. No dominant heuristic is known in the general nonpreemptive case. The author has developed a heuristic to solve the nonpreemptive scheduling problem with unrelated job processing times. Initially, the algorithm calculates a basic solution. Next, it considers the interchanges of job subsets to equal processing time sum interchanging resources (i.e. a machine for a given period). This paper models the scheduling problem. It presents the heuristic and its result quality, solving 576 problems for 18 problem sizes. An application of school timetable scheduling illustrates the use of this heuristic.  相似文献   

4.
Job scheduling has always been a challenging task in modern manufacturing and the most real life scheduling problems which involves multi-criteria and multi-machine environments. In this research our direction is largely motivated by the adoption of the Just-In-Time (JIT) philosophy in parallel machines system, where processing times of jobs are controllable. The goal of this paper is to minimize total weighted tardiness and earliness besides jobs compressing and expanding costs, depending on the amount of compression/expansion as well as maximum completion time called makespan simultaneously. Jobs due dates are distinct and no inserted idle time is allowed after starting machine processing. Also each machine is capable of processing only some predetermined jobs and operations with probably different speeds. A Mixed Integer Programming (MIP) model is proposed to formulate such a problem and is solved optimally in small size instances. A Parallel Net Benefit Compression-Net Benefit Expansion (PNBCNBE) heuristic is then presented to acquire the optimal jobs set amount of compression and expansion processing times in a given sequence. To solve medium-to-large size cases, a proposed heuristic, two meta-heuristics and a hybrid technique are also employed. Experimental results demonstrate that our hybrid procedure is a proficient method and could efficiently solve such complicated problems.  相似文献   

5.
We address the two-stage assembly scheduling problem where there are m machines at the first stage and an assembly machine at the second stage. The objective is to schedule the available n jobs so that total completion time of all n jobs is minimized. Setup times are treated as separate from processing times. This problem is NP-hard, and therefore we present a dominance relation and propose three heuristics. The heuristics are evaluated based on randomly generated data. One of the proposed heuristics is known to be the best heuristic for the case of zero setup times while another heuristic is known to perform well for such problems. A new version of the latter heuristic, which utilizes the dominance relation, is proposed and shown to perform much better than the other two heuristics.  相似文献   

6.
We consider the problem of scheduling a set of nonsimultaneously available jobs on one machine. Each job has a ready time only at or after which the job can be processed. All the jobs have a common due date, which needs to be determined. The problem is to determine a due date and a schedule so as to minimize a total penalty depending on the earliness, tardiness and due date. We show that this problem is strongly NP-hard and give an efficient algorithm that finds an optimal due date and schedule when either the job sequence is predetermined or all jobs have the same processing time. We also propose three approximation algorithms for the general and special cases together with their experimental analysis.

Scope and purpose

We consider the single machine due date assignment problem for scheduling jobs which are ready for processing at different times. The problem under consideration arises in production planning and scheduling concerning the setting of appropriate due dates for a number of customer orders arriving over time. Most of the earlier publications on this subject assumed that the jobs are ready for processing simultaneously. This assumption is too restrictive for real-life production systems where jobs arrive at different times. We show that the problem with unequal ready times is NP-hard and develop fast heuristic algorithms for it, and exact algorithms for two special cases.  相似文献   

7.
This paper presents several search heuristics and their performance in batch scheduling of parallel, unrelated machines. Identical or similar jobs are typically processed in batches in order to decrease setup times and/or processing times. The problem accounts for allotting batched work parts into unrelated parallel machines, where each batch consists of a fixed number of jobs. Some batches may contain different jobs but all jobs within each batch should have an identical processing time and a common due date. Processing time of each job of a batch is determined according to the machine group as well as the batch group to which the job belongs. Major or minor setup times are required between two subsequent batches depending on batch sequence but are independent of machines. The objective of our study is to minimize the total weighted tardiness for the unrelated parallel machine scheduling. Four search heuristics are proposed to address the problem, namely (1) the earliest weighted due date, (2) the shortest weighted processing time, (3) the two-level batch scheduling heuristic, and (4) the simulated annealing method. These proposed local search heuristics are tested through computational experiments with data from dicing operations of a compound semiconductor manufacturing facility.  相似文献   

8.
This paper focuses on scheduling jobs with different processing times and distinct due dates on a single machine with no inserted idle time as to minimize the sum of total earliness and tardiness. This scheduling problem is a very important and frequent industrial problem that is common to most just-in-time production environments. This NP hard scheduling problem is herein solved using a hybrid heuristic which combines local search heuristics (dispatching rules, hill climbing and simulated annealing) and an evolutionary algorithm based on genetic algorithms. The heuristic involves low and high, relay and teamwork hybridization. Computational results reflect the sizeable solution quality improvement induced by hybridization, and assess the impact of each type of hybridization on the efficiency of the hybrid heuristic.  相似文献   

9.
This paper considers a scheduling problem for parallel burn-in ovens in the semiconductor manufacturing industry. An oven is a batch processing machine with restricted capacity. The batch processing time is set by the longest processing time among those of all the jobs contained in the batch. All jobs are assumed to have the same due date. The objective is to minimize the sum of the absolute deviations of completion times from the due date (earliness–tardiness) of all jobs. We suggest three decomposition heuristics. The first heuristic applies the exact algorithm due to Emmons and Hall (for the nonbatching problem) in order to assign the jobs to separate early and tardy job sets for each of the parallel burn-in ovens. Then, we use job sequencing rules and dynamic programming in order to form batches for the early and tardy job sets and sequence them optimally. The second proposed heuristic is based on genetic algorithms. We use a genetic algorithm in order to assign jobs to each single burn-in oven. Then, after forming early and tardy job sets for each oven we apply again sequencing rules and dynamic programming techniques to the early and tardy jobs sets on each single machine in order to form batches. The third heuristic assigns jobs to the m early job sets and m tardy jobs sets in case of m burn-in ovens in parallel via a genetic algorithm and applies again dynamic programming and sequencing rules. We report on computational experiments based on generated test data and compare the results of the heuristics with known exact solution for small size test instances obtained from a branch and bound scheme.  相似文献   

10.
We consider a two-machine re-entrant flowshop scheduling problem in which all jobs must be processed twice on each machine and there are sequence-dependent setup times on the second machine. For the problem with the objective of minimizing total tardiness, we develop dominance properties and a lower bound by extending those for a two-machine re-entrant flowshop problem (without sequence-dependent setup times) as well as heuristic algorithms, and present a branch and bound algorithm in which these dominance properties, lower bound, and heuristics are used. For evaluation of the performance of the branch and bound algorithm and heuristics, computational experiments are performed on randomly generated instances, and results are reported.  相似文献   

11.
In this paper we study the problem of scheduling n jobs with a common due date and proportional early and tardy penalties on m identical parallel machines. We show that the problem is NP-hard and propose a dynamic programming algorithm to solve it. We also propose two heuristics to tackle the problem and analyze their worst-case error bounds.Scope and purposeScheduling problems to minimize the total weighted earliness and tardiness (WET) arise in Just-in-time manufacturing systems, where one of the objectives is to complete each job as close to its due date as possible. The earliness and tardiness weights of a job in WET tend to increase with the value of the job. Because processing time is often a good surrogate for the value of a job, it is reasonable to consider weights that are proportional to job processing times. In this paper we study the parallel identical machine WET problem with proportional weights. We propose both exact and approximation algorithms to tackle the problem.  相似文献   

12.
The single machine total weighted tardiness problem is an NP-hard problem that requires the use of heuristic solution procedures when more than 50 jobs are to be scheduled. In the literature, a well-tuned simulated annealing method and a descent heuristic with zero interchanges (DESO) both generated the best solutions for a large set of randomly generated problems. Due dates are generated by defining two parameters: the relative range of due dates (RDD) and the average tardiness factor (TF). In this paper, we define several heuristics based on dynamic programming and then use these and DESO heuristics to solve 50-job, 100-job, 200-job, and 500-job problems.  相似文献   

13.
In a manufacturing or service system, the actual processing time of a job can be controlled by the amount of an indivisible resource allocated, such as workers or auxiliary facilities. In this paper, we consider unrelated parallel-machine scheduling problems with discrete controllable processing times. The processing time of a job is discretely controllable by the allocation of indivisible resources. The planner must make decisions on whether or how to allocate resources to jobs during the scheduling horizon to optimize the performance measures. The objective is to minimize the total cost including the cost measured by a standard criterion and the total processing cost. We first consider three scheduling criterions: the total completion time, the total machine load, and the total earliness and tardiness penalties. If the number of machines and the number of possible processing times are fixed, we develop polynomial time algorithms for the considered problems. We then consider the minimization problem of the makespan cost plus the total processing cost and present an integer programming method and a heuristic method to solve the studied problem.  相似文献   

14.
In this paper, we discuss a flexible flow shop scheduling problem with batch processing machines at each stage and with jobs that have unequal ready times. Scheduling problems of this type can be found in semiconductor wafer fabrication facilities (wafer fabs). We are interested in minimizing the total weighted tardiness of the jobs. We present a mixed integer programming formulation. The batch scheduling problem is NP-hard. Therefore, an iterative stage-based decomposition approach is proposed that is hybridized with neighborhood search techniques. The decomposition scheme provides internal due dates and ready times for the jobs on the first and second stage, respectively. Each of the resulting parallel machine batch scheduling problems is solved by variable neighborhood search in each iteration. Based on the schedules of the subproblems, the internal due dates and ready times are updated. We present the results of designed computational experiments that also consider the number of machines assigned to each stage as a design factor. It turns out that the proposed hybrid approach outperforms an iterative decomposition scheme where a fairly simple heuristic based on time window decomposition and the apparent tardiness cost dispatching rule is used to solve the subproblems. Recommendations for the design of the two stages with respect to the number of parallel machines on each stage are given.  相似文献   

15.
This research analyzes the problem of scheduling a set of n jobs with arbitrary job sizes and non-zero ready times on a set of m unrelated parallel batch processing machines so as to minimize the makespan. Unrelated parallel machine is a generalization of the identical parallel processing machines and is closer to real-world production systems. Each machine can accommodate and process several jobs simultaneously as a batch as long as the machine capacity is not exceeded. The batch processing time and the batch ready time are respectively equal to the largest processing time and the largest ready time among all the jobs in the batch. Motivated by the computational complexity and the practical relevance of the problem, we present several heuristics based on first-fit and best-fit earliest job ready time rules. We also present a mixed integer programming model for the problem and a lower bound to evaluate the quality of the heuristics. The small computational effort of deterministic heuristics, which is valuable in some practical applications, is also one of the reasons that motivates this study. The results show that the heuristic proposed in this paper has a superior performance compared to the heuristics based on ideas proposed in the literature.  相似文献   

16.
The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for fighter aircrafts (jobs) on multiple tankers (machines) to minimize the total weighted tardiness. ARSP can be modeled as a parallel machine scheduling with ready times and due date-to-deadline window to minimize total weighted tardiness. ARSP assumes that the jobs have different ready times and a due date-to-deadline window between refueling due date and a deadline to return without refueling. In this paper, we first formulate the ARSP as a mixed integer programming model. The objective function is a piece-wise tardiness cost that takes into account due date-to-deadline windows and job priorities. Since ARSP is NP-hard, two heuristics are proposed to obtain solutions in reasonable computation times, namely (1) modified ATC rule (MATC), (2) a simulated annealing method (SA). The proposed heuristic algorithms are tested in terms of solution quality and CPU time through computational experiments with data randomly generated to represent aerial refueling operations of an in-theater air operation. Solutions provided by both algorithms were compared to optimal solutions for problems with up to 12 jobs and to each other for larger problems with up to 60 jobs. The results show that, MATC is more likely to outperform SA especially when the problem size increases, although it has significantly worse performance than SA in terms of deviation from optimal solution for small size problems. Moreover CPU time performance of MATC is significantly better than SA in both cases.  相似文献   

17.
We study a single machine scheduling problem, where the machine is unavailable for processing for a pre-specified time period. We assume that job processing times are position-dependent. The objective functions considered are minimum makespan, minimum total completion time and minimum number of tardy jobs. All these problems are known to be NP-hard even without position-dependent processing times. For all three cases we introduce simple heuristics which are based on solving the classical assignment problem. Lower bounds, worst case analysis and asymptotic optimality are discussed. All heuristics are shown numerically to perform extremely well.  相似文献   

18.
In this paper we address the problem of scheduling jobs in a permutation flowshop with a just-in-time objective, i.e. the minimisation of the sum of total tardiness and total earliness. Since the problem is NP-hard, there are several approximate procedures available for the problem, although their performance largely depends on the due dates of the specific instance to be solved. After an in-depth analysis of the problem, different cases or sub-problems are identified and, by incorporating this knowledge, four heuristics are proposed: a fast constructive heuristic, and three different local search procedures that use the proposed constructive heuristic as initial solution.The proposed Prod. Type: FLPheuristics have been compared on an extensive set of instances with the best-so-far heuristic for the problem, as well as with adaptations of efficient heuristics for similar scheduling problems. The computational results show the excellent performance of the proposed algorithms. Finally, the positive impact of the efficient heuristics is evaluated by including them as seed sequences for one of the best metaheuristic for the problem.  相似文献   

19.
This paper addresses the problem of scheduling jobs with non-identical sizes on a single batch processing machine. A batch processing machine is one which can process multiple jobs simultaneously as a batch as long as the total size of jobs being processed does not exceed the machine capacity. The batch processing time is equal to the longest processing time among all jobs in the batch. For the simultaneous minimization of the bi-criteria of makespan and maximum tardiness, we propose two different multi-objective genetic algorithms based on different representation schemes. While the first algorithm do search via generating sequences of jobs using genetic operators and then batching jobs keeping their order in the sequence, the second algorithm uses the idea of generating batches of jobs directly using genetic operators and ensures feasibility through using heuristic procedures. The type of representation used in the second algorithm allows introducing heuristics with the ability of biasing the search towards each objective and also allows hybridization with a local search heuristic that gives the ability of finding Pareto-optimal or locally efficient Pareto-solutions. Computational results show that the non-dominated solutions obtained by the latter algorithm are very superior in closeness to the true Pareto-optimal solutions and to keep diversity in the obtained Pareto-set, as the problem size increases.  相似文献   

20.
The problem of scheduling in two different types of flowshops (all jobs available at time zero, different job availability times known a priori) and in flowline-based manufacturing cells is considered with the objective of minimizing the sum of weighted flowtime and weighted tardiness of jobs. First, heuristic preference relations are developed by the consideration of lower bounds on the completion times, operation due-dates, and weights for holding and tardiness of jobs. A heuristic algorithm for scheduling is then proposed by making use of the heuristic preference relations. Two more heuristic algorithms are developed by implementing an improvement scheme to enhance the quality of the solution given by the first heuristic algorithm. The proposed and the existing heuristics are evaluated with respect to the three problem classes under consideration by solving a large number of randomly generated problems. The results of an extensive computational investigation for various problem sizes are presented. It has been observed that all three proposed heuristics perform better than the existing heuristics in giving a solution of superior quality and that the first proposed heuristic yields a good solution by requiring a negligible CPU time. In addition, an experimental investigation is carried out to evaluate the effectiveness of the improvement scheme when implemented in the existing heuristics, and also the effectiveness of heuristics based on simulated annealing. The results are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号