首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
An oriented k-coloring of an oriented graph G is a mapping such that (i) if xyE(G) then c(x)≠c(y) and (ii) if xy,ztE(G) then c(x)=c(t)⇒c(y)≠c(z). The oriented chromatic number of an oriented graph G is defined as the smallest k such that G admits an oriented k-coloring. We prove in this paper that every Halin graph has oriented chromatic number at most 9, improving a previous bound proposed by Vignal.  相似文献   

3.
The oriented chromatic number of an oriented graph G is the minimum order of an oriented graph H such that G admits a homomorphism to H. The oriented chromatic number of an unoriented graph G is the maximal chromatic number over all possible orientations of G. In this paper, we prove that every Halin graph has oriented chromatic number at most 8, improving a previous bound by Hosseini Dolama and Sopena, and confirming the conjecture given by Vignal.  相似文献   

4.
A polychromatic k-coloring of a plane graph G is an assignment of k colors to the vertices of G such that each face of G, except possibly for the outer face, has all k colors on its boundary. A rectangular partition is a partition of a rectangle R into a set of non-overlapping rectangles such that no four rectangles meet at a point. It was conjectured in [Y. Dinitz, M.J. Katz, R. Krakovski, Guarding rectangular partitions, in: 23rd European Workshop Computational Geometry, 2007, pp. 30-33] that every rectangular partition admits a polychromatic 4-coloring. In this note we prove the conjecture for guillotine subdivisions — a well-studied subfamily of rectangular partitions.  相似文献   

5.
In this paper, we focus on the oriented coloring of graphs. Oriented coloring is a coloring of the vertices of an oriented graph G without symmetric arcs such that (i) no two neighbors in G are assigned the same color, and (ii) if two vertices u and v such that (u,v)∈A(G) are assigned colors c(u) and c(v), then for any (z,t)∈A(G), we cannot have simultaneously c(z)=c(v) and c(t)=c(u). The oriented chromatic number of an unoriented graph G is the smallest number k of colors for which any of the orientations of G can be colored with k colors.The main results we obtain in this paper are bounds on the oriented chromatic number of particular families of planar graphs, namely 2-dimensional grids, fat trees and fat fat trees.  相似文献   

6.
Suppose the vertices of a graph G were labeled arbitrarily by positive integers, and let S(v) denote the sum of labels over all neighbors of vertex v. A labeling is lucky if the function S is a proper coloring of G, that is, if we have S(u)≠S(v) whenever u and v are adjacent. The least integer k for which a graph G has a lucky labeling from the set {1,2,…,k} is the lucky number of G, denoted by η(G).Using algebraic methods we prove that η(G)?k+1 for every bipartite graph G whose edges can be oriented so that the maximum out-degree of a vertex is at most k. In particular, we get that η(T)?2 for every tree T, and η(G)?3 for every bipartite planar graph G. By another technique we get a bound for the lucky number in terms of the acyclic chromatic number. This gives in particular that for every planar graph G. Nevertheless we offer a provocative conjecture that η(G)?χ(G) for every graph G.  相似文献   

7.
8.
Certain subgraphs of a given graph G restrict the minimum number χ(G) of colors that can be assigned to the vertices of G such that the endpoints of all edges receive distinct colors. Some of such subgraphs are related to the celebrated Strong Perfect Graph Theorem, as it implies that every graph G contains a clique of size χ(G), or an odd hole or an odd anti-hole as an induced subgraph. In this paper, we investigate the impact of induced maximal cliques, odd holes and odd anti-holes on the polytope associated with a new 0-1 integer programming formulation of the graph coloring problem. We show that they induce classes of facet defining inequalities.  相似文献   

9.
An edge covering coloring of a graph G is an edge-coloring of G such that each color appears at each vertex at least one time. The maximum integer k such that G has an edge covering coloring with k colors is called the edge covering chromatic index of G and denoted by . It is known that for any graph G with minimum degree δ(G), it holds that . Based on the subgraph of G induced by the vertices of minimum degree, we find a new sufficient condition for a graph G to satisfy . This result substantially extends a result of Wang et al. in 2006.  相似文献   

10.
Let G be a graph. The maximum average degree of G, written Mad(G), is the largest average degree among the subgraphs of G. It was proved in Montassier et al. (2010) [11] that, for any integer k?0, every simple graph with maximum average degree less than admits an edge-partition into a forest and a subgraph with maximum degree at most k; furthermore, when k?3 both subgraphs can be required to be forests. In this note, we extend this result proving that, for k=4,5, every simple graph with maximum average degree less than mk admits an edge-partition into two forests, one having maximum degree at most k (i.e. every graph with maximum average degree less than (resp. ) admits an edge-partition into two forests, one having maximum degree at most 4 (resp. 5)).  相似文献   

11.
A graph G is said to be conditional k-edge-fault pancyclic if after removing k faulty edges from G, under the assumption that each vertex is incident to at least two fault-free edges, the resulting graph contains a cycle of every length from its girth to |V(G)|. In this paper, we consider ternary n-cube networks and show that they are conditional (4n−5)-edge-fault pancyclic.  相似文献   

12.
A graph G∗ is 1-edge fault-tolerant with respect to a graph G, denoted by 1-EFT(G), if every graph obtained by removing any edge from G∗ contains G. A 1-EFT(G) graph is optimal if it contains the minimum number of edges among all 1-EFT(G) graphs. The kth ladder graph, Lk, is defined to be the cartesian product of the Pk and P2 where Pn is the n-vertex path graph. In this paper, we present several 1-edge fault-tolerant graphs with respect to ladders. Some of these graphs are proven to be optimal.  相似文献   

13.
In this paper we consider the secret sharing problem on special access structures with minimal qualified subsets of size two, i.e. secret sharing on graphs. This means that the participants are the vertices of the graph and the qualified subsets are the subsets of V(G) spanning at least one edge. The information ratio of a graph G is denoted by R(G) and is defined as the ratio of the greatest size of the shares a vertex has to remember and of the size of the secret. Since the determination of the exact information ratio is a non-trivial problem even for small graphs (i.e. for V(G) = 6), every construction can be of particular interest. Let k be the maximal degree in G. In this paper we prove that R(G) = 2 ? 1/k for every graph G with the following properties: (A) every vertex has at most one neighbour of degree one; (B) vertices of degree at least 3 are not connected by an edge; (C) the girth of the graph is at least 6. We prove this by using polyhedral combinatorics arguments and the entropy method.  相似文献   

14.
An l-facial coloring of a plane graph is a vertex coloring such that any two different vertices joined by a facial walk of length at most l receive distinct colors. It is known that every plane graph admits a 2-facial coloring using 8 colors [D. Král, T. Madaras, R. Škrekovski, Cyclic, diagonal and facial coloring, European J. Combin. 3-4 (26) (2005) 473-490]. We improve this bound for plane graphs with large girth and prove that if G is a plane graph with girth g?14 (resp. 10, 8) then G admits a 2-facial coloring using 5 colors (resp. 6, 7). Moreover, we give exact bounds for outerplanar graphs and K4-minor free graphs.  相似文献   

15.
The disk dimension of a planar graph G is the least number k for which G embeds in the plane minus k open disks, with every vertex on the boundary of some disk. Useful properties of graphs with a given disk dimension are derived, leading to an algorithm to obtain an outerplanar subgraph of a graph with disk dimension k by removing at most 2k−2 vertices. This reduction is used to obtain linear-time exact and approximation algorithms on graphs with fixed disk dimension. In particular, a linear-time approximation algorithm is presented for the pathwidth problem.  相似文献   

16.
The Eulerian Editing problem asks, given a graph G and an integer k, whether G can be modified into an Eulerian graph using at most k edge additions and edge deletions. We show that this problem is polynomial-time solvable for both undirected and directed graphs. We generalize these results for problems with degree parity constraints and degree balance constraints, respectively. We also consider the variants where vertex deletions are permitted. Combined with known results, this leads to full complexity classifications for both undirected and directed graphs and for every subset of the three graph operations.  相似文献   

17.
Suppose that D is an acyclic orientation of the graph G. An arc of D is dependent if its reversal creates a directed cycle. Let d(D) denote the number of dependent arcs in D. Define dmin(G) (dmax(G)) to be the minimum (maximum) number of d(D) over all acyclic orientations D of G. We call G fully orientable if G has an acyclic orientation with exactly k dependent arcs for every k satisfying dmin(G)?k?dmax(G). We prove that every 2-degenerate graph is fully orientable and give interpretations to their dmin.  相似文献   

18.
We define a perfect coloring of a graph G as a proper coloring of G such that every connected induced subgraph H of G uses exactly ω(H) many colors where ω(H) is the clique number of H. A graph is perfectly colorable if it admits a perfect coloring. We show that the class of perfectly colorable graphs is exactly the class of perfect paw-free graphs. It follows that perfectly colorable graphs can be recognized and colored in linear time.  相似文献   

19.
A homomorphism from an oriented graph G to an oriented graph H is an arc-preserving mapping φ from V(G) to V(H), that is φ(x)φ(y) is an arc in H whenever xy is an arc in G. The oriented chromatic number of G is the minimum order of an oriented graph H such that G has a homomorphism to H. The oriented chromatic index of G is the minimum order of an oriented graph H such that the line-digraph of G has a homomorphism to H.In this paper, we determine for every k?3 the oriented chromatic number and the oriented chromatic index of the class of oriented outerplanar graphs with girth at least k.  相似文献   

20.
In a graph G, a k-container Ck(u,v) is a set of k disjoint paths joining u and v. A k-container Ck(u,v) is k∗-container if every vertex of G is passed by some path in Ck(u,v). A graph G is k∗-connected if there exists a k∗-container between any two vertices. An m-regular graph G is super-connected if G is k∗-connected for any k with 1?k?m. In this paper, we prove that the recursive circulant graphs G(2m,4), proposed by Park and Chwa [Theoret. Comput. Sci. 244 (2000) 35-62], are super-connected if and only if m≠2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号