首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
A genetic algorithm approach is used to solve a multi-objective discrete reliability optimization problem in a k dissimilar-unit non-repairable cold-standby redundant system. Each unit is composed of a number of independent components with generalized Erlang distributions arranged in a series–parallel configuration. There are multiple component choices with different distribution parameters available for being replaced with each component of the system. The objective of the reliability optimization problem is to select the best components, from the set of available components, to be placed in the standby system in order to minimize the initial purchase cost of the system, maximize the system MTTF (mean time to failure), minimize the system VTTF (variance of time to failure) and also maximize the system reliability at the mission time. Finally, we apply a genetic algorithm with double strings using continuous relaxation based on reference solution updating (GADSCRRSU) to solve this multi-objective problem, using goal attainment formulation. The results are also compared against the results of a discrete-time approximation technique to show the efficiency of the proposed GA approach.  相似文献   

2.
To improve system reliability without changing its nature, three methods are proposed. The first method uses more reliable components and the second method provides redundant components within the system. The third method is a combination of these two methods. The redundancy allocation problem (RAP) finds the appropriate mix of components and redundancies within a system to maximize its reliability or minimize its cost due to several constraints, such as cost, weight, and volume. This paper presents a methodology to solve the RAP, which is an NP‐hard problem, modeled with discrete variables. In this paper, we use a metaheuristic to solve the RAP of a series–parallel system with a mix of components. Our metaheuristic offers a practical method with specific solution encoding, and combines a penalty function to solve large instances of the relaxed RAP, where different types of components can be used in parallel. The efficiency of the algorithm was tested through a set of well‐known benchmark problems from the literature. Testing of the algorithm achieved satisfactory results in reasonable computing time.  相似文献   

3.
This paper addresses the heterogeneous redundancy allocation problem in multi-state series-parallel reliability structures with the objective to minimize the total cost of system design satisfying the given reliability constraint and the consumer load demand. The demand distribution is presented as a piecewise cumulative load curve and each subsystem is allowed to consist of parallel redundant components of not more than three types. The system uses binary capacitated components chosen from a list of available products to provide redundancy so as to increase system performance and reliability. The components are characterized by their feeding capacity, reliability and cost. A system that consists of elements with different reliability and productivity parameters has the capacity strongly dependent upon the selection of constituent components. A binomial probability based method to compute exact system reliability index is suggested. To analyze the problem and suggest an optimal/near-optimal system structure, an ant colony optimization algorithm has been presented. The solution approach consists of a series of simple steps as used in early ant colony optimization algorithms dealing with other optimization problems and offers straightforward analysis. Four multi-state system design problems have been solved for illustration. Two problems are taken from the literature and solved to compare the algorithm with the other existing methods. The other two problems are based upon randomly generated data. The results show that the method can be appealing to many researchers with regard to the time efficiency and yet without compromising over the solution quality.  相似文献   

4.
Reliability problems are an important type of optimization problems that are motivated by different needs of real-world applications such as telecommunication systems, transformation systems, and electrical systems, so on. This paper studies a special type of these problems which is called redundancy allocation problem (RAP) and develops a bi-objective RAP (BORAP). The model includes non-repairable series–parallel systems in which the redundancy strategy is considered as a decision variable for individual subsystems. The objective functions of the model are (1) maximizing system reliability and (2) minimizing the system cost. Meanwhile, subject to system-level constraint, the best redundancy strategy among active or cold-standby, component type, and the redundancy level for each subsystem should be determined. To have a more practical model, we have also considered non-constant component hazard functions and imperfect switching of cold-standby redundant component. To solve the model, since RAP belong to the NP-hard class of the optimization problems, two effective multi-objective metaheuristic algorithms named non-dominated sorting genetic algorithms (NSGA-II) and multi-objective particle swarm optimization (MOPSO) are proposed. Finally, the performance of the algorithms is analyzed on a typical case and conclusions are demonstrated.  相似文献   

5.
In this study, we consider a bi-objective redundancy allocation problem on a series–parallel system with component level redundancy strategy. Our aim is to maximize the minimum subsystem reliability, while minimizing the overall system cost. The Pareto solutions of this problem are found by the augmented ε-constraint approach for small and moderate sized instances. After finding the Pareto solutions, we apply a well known sorting procedure, UTADIS, to categorize the solutions into preference ordered classes, such as A, B, and C. In this procedure, consecutive classes are separated by thresholds determined according to the utility function constructed from reference sets of classes. In redundancy allocation problems, reference sets may contain a small number of solutions (even a single solution). We propose the τ-neighborhood approach to increase the number of references. We perform experiments on some reliability optimization test problems and general test problems.  相似文献   

6.
The paper develops a cost model with an imperfect debugging and random life cycle as well as a penalty cost that is used to determine the optimal release policies for a software system. The software reliability model, based on the nonhomogeneous Poisson process, allows for three different error types: critical, major and minor errors. The model also allows for the introduction of any of these errors during the removal of an error. Using the software reliability model presented, the cost model with multiple error types and imperfect debugging is developed. This cost also considers the penalty cost due to delay for a scheduled delivery time and the length of the software life cycle is random with a known distribution. The optimal software release policies that minimize the expected software system costs (subject to the various constraints) or maximize the software reliability subject to a cost constraint, are then determined. Numerical examples are provided to illustrate the results.  相似文献   

7.
The present paper studies the reliability-based structural optimization of the civil engineering in the seismic zone. The objective is to minimize the sum of construction material cost and the expected failure loss under severe earthquake, which is obtained by the sum of the products of the failure probability and its failure losses for the important failure modes. The set of constraints includes the deterministic constraints, and the constraints based on structural reliability—the reliability index constraints of structural element failure for the serviceability state under minor earthquake and the failure probability of the structural system for the ultimate limit state under severe earthquake. By introducing the load roughness index, the structural system reliability computation under hazard load can be greatly simplified, which is approximately determined by its weakest failure mode. Finally, the numerical example of high rising shear RC frame is calculated.  相似文献   

8.
Nowadays, the search in reliability-based design optimization is becoming an important engineering design activity. Traditionally for these problems, the objective function is to minimize a cost function while satisfying the reliability constraints. The reliability constraints are usually formulated as constraints on the probability of failure. This paper focuses on the study of a particular problem with the failure mode on vibration of structure. The difficulty in evaluating reliability constraints comes from the fact that modern reliability analysis methods are themselves formulated as an optimization problem. Solving such nested optimization problems is extremely expensive for large-scale multidisciplinary systems which are likewise computationally intensive. With this in mind research, we propose in this paper a new method to treat reliability-based optimization methods under frequencies constraint. The goal of this development has resolved just one problem of optimization and reduced the cost of computation. Aircraft wing design typically involves multiple disciplines such as aerodynamics and structure; this numerical example demonstrated the different advantages of the proposed method.  相似文献   

9.
This paper considers single-machine scheduling problems with deteriorating jobs, i.e., jobs whose processing times are an increasing function of their starting times. In addition, the jobs are related by a series–parallel graph. It is shown that for the general linear problem to minimize the makespan, polynomial algorithms exist. It is also shown that for the proportional linear problem of minimization of the total weighted completion time, polynomial algorithms exist, too.  相似文献   

10.
何盼  郑志浩  袁月  谭春 《软件学报》2017,28(2):443-456
在需要长时间可靠运行的软件系统中,由于持续运行时间和任务响应速度的要求增加,工作组件在被探测到失效后将被冗余组件实时替换.但现有可靠性优化研究通常假设冷备份冗余在所有积极冗余组件失效后才使用.针对支持实时替换的混合冗余策略,对其冗余度优化分配进行研究.该策略不仅能够保障系统可靠性,而且能够保障系统性能,故选用实时可用性和任务完成效率两类约束条件,建立冗余配置代价最小化模型.基于马尔可夫链理论对可靠性及性能两类系统指标进行定量分析;采用数值计算方法对非线性的状态分析模型进行计算;改进二元组编码遗传算法对上述优化问题进行求解.采用实例对串并联系统中实时可用性及任务完成效率的分析进行了说明,并对优化冗余分配模型进行了验证.实验结果表明,在相同冗余度下,支持实时替换的混合冗余策略在任务完成效率方面优于传统的混合冗余策略.所以,在相同约束条件下不同混合冗余策略需要采用不同的冗余优化配置方案.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号