首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Advanced Robotics》2013,27(7):749-762
This paper proposes a method of robot navigation in outdoor environments based upon panoramic view and Global Positioning System (GPS) information. Our system is equipped with a GPS navigator and a camera. The route scene can be described by three-dimensional objects extracted as landmarks from panoramic representations. For an environment having limited routes, a two-dimensional map can be made based upon routes scenes, assuming that the topological relation of routes at intersections is known. By using GPS information, the global position of a mobile robot can be known, and a coarse-to-fine method is used to generate an outdoor environment map and locate a mobile robot. First, a robot finds its approximate position based on the GPS information. Then, it identifies its location from the image information. Experimental results in outdoor environments are given.  相似文献   

3.
周方波  赵怀林  刘华平   《智能系统学报》2022,17(5):1032-1038
在移动机器人执行日常家庭任务时,首先需要其能够在环境中避开障碍物,自主地寻找到房间中的物体。针对移动机器人如何有效在室内环境下对目标物体进行搜索的问题,提出了一种基于场景图谱的室内移动机器人目标搜索,其框架结合了导航地图、语义地图和语义关系图谱。在导航地图的基础上建立了包含地标物体位置信息的语义地图,机器人可以轻松对地标物体进行寻找。对于动态的物体,机器人根据语义关系图中物体之间的并发关系,优先到关系强度比较高的地标物体旁寻找。通过物理实验展示了机器人在语义地图和语义关系图的帮助下可以实现在室内环境下有效地寻找到目标,并显著地减少了搜索的路径长度,证明了该方法的有效性。  相似文献   

4.
本文提出了一种新型的拓扑地图,该地图用激光的扇区特征和视觉的比例不变特征(SIFT)来联合表示节点。与传统地图相比,该地图在创建过程中不依赖任何人工路标和机器人的全局定位。机器人通过综合考虑单个节点的相似度和不同节点间的空间关系,利用隐马尔可夫模型来提高节点识别的准确率。实验表明,本文的拓扑地图不仅易于创建和维护,而且适用于机器人在大规模室内环境下的自主导航。  相似文献   

5.
6.
This paper describes ongoing research on vision based mobile robot navigation for wheel chairs. After a guided tour through a natural environment while taking images at regular time intervals, natural landmarks are extracted to automatically build a topological map. Later on this map can be used for place recognition and navigation. We use visual servoing on the landmarks to steer the robot. In this paper, we investigate ways to improve the performance by incorporating inertial sensors. © 2004 Wiley Periodicals, Inc.  相似文献   

7.
A new approach to the design of a neural network (NN) based navigator is proposed in which the mobile robot travels to a pre-defined goal position safely and efficiently without any prior map of the environment. This navigator can be optimized for any user-defined objective function through the use of an evolutionary algorithm. The motivation of this research is to develop an efficient methodology for general goal-directed navigation in generic indoor environments as opposed to learning specialized primitive behaviors in a limited environment. To this end, a modular NN has been employed to achieve the necessary generalization capability across a variety of indoor environments. Herein, each NN module takes charge of navigating in a specialized local environment, which is the result of decomposing the whole path into a sequence of local paths through clustering of all the possible environments. We verify the efficacy of the proposed algorithm over a variety of both simulated and real unstructured indoor environments using our autonomous mobile robot platform.  相似文献   

8.
In this paper, we describe how a mobile robot under simple visual control can retrieve a particular goal location in an open environment. Our model neither needs a precise map nor to learn all the possible positions in the environment. The system is a neural architecture inspired by neurobiological analysis of how visual patterns named landmarks are recognized. The robot merges these visual informations and their azimuth to build a plastic representation of its location. This representation is used to learn the best movement to reach the goal. A simple and fast on-line learning of a few places located near the goal allows this goal to be reached from anywhere in its neighborhood. The system uses only a very rough representation of the robot environment and presents very high generalization capabilities. We describe an efficient implementation of autonomous and motivated navigation tested on our robot in real indoor environments. We show the limitations of the model and its possible extensions.  相似文献   

9.
针对移动机器人在SLAM(即时定位与地图构建)过程中出现的定位失真问题,提出一种通过搭建地标数据库和位姿推导模型,修正机器人错误定位的方法。建图过程中,融合视觉信息与激光数据,得到语义激光,赋予地标语义标签并记录其在地图上的位置信息。导航过程中,当产生定位偏差时,结合多种位姿数据和相对位置关系,推算出机器人在地图上的实际位置,完成重定位。通过实验测试可知,该方法克服了现有机器人在实际室内动态环境下,单一地采用激光或视觉进行定位或重定位技术的缺点和不足,能有效解决“机器人位置漂移问题”。将机器人从当前位置劫持到另一位置,也能根据提出的算法迅速重定位,且定位精度高。  相似文献   

10.
Pathfinding is becoming more and more common in autonomous vehicle navigation, robot localization, and other computer vision applications. In this paper, a novel approach to mapping and localization is presented that extracts visual landmarks from a robot dataset acquired by a Kinect sensor. The visual landmarks are detected and recognized using the improved scale-invariant feature transform (I-SIFT) method. The methodology is based on detecting stable and invariant landmarks in consecutive (red-green-blue depth) RGB-D frames of the robot dataset. These landmarks are then used to determine the robot path, and a map is constructed by using the visual landmarks. A number of experiments were performed on various datasets in an indoor environment. The proposed method performs efficient landmark detection in various environments, which includes changes in rotation and illumination. The experimental results show that the proposed method can solve the simultaneous localization and mapping (SLAM) problem using stable visual landmarks, but with less computation time.  相似文献   

11.
Inexpensive ultrasonic sensors, incremental encoders, and grid-based probabilistic modeling are used for improved robot navigation in indoor environments. For model-building, range data from ultrasonic sensors are constantly sampled and a map is built and updated immediately while the robot is travelling through the workspace. The local world model is based on the concept of an occupancy grid. The world model extracted from the range data is based on the geometric primitive of line segments. For the extraction of these features, methods such as the Hough transform and clustering are utilized. The perceived local world model along with dead-reckoning and ultrasonic sensor data are combined using an extended Kalman filter in a localization scheme to estimate the current position and orientation of the mobile robot, which is subsequently fed to the map-building algorithm. Implementation issues and experimental results with the Nomad 150 mobile robot in a real-world indoor environment (office space) are presented  相似文献   

12.
庄严  王伟  王珂  徐晓东 《自动化学报》2005,31(6):925-933
该文研究了部分结构化室内环境中自主移动机器人同时定位和地图构建问题.基于激光和视觉传感器模型的不同,加权最小二乘拟合方法和非局部最大抑制算法被分别用于提取二维水平环境特征和垂直物体边缘.为完成移动机器人在缺少先验地图支持的室内环境中的自主导航任务,该文提出了同时进行扩展卡尔曼滤波定位和构建具有不确定性描述的二维几何地图的具体方法.通过对于SmartROB-2移动机器人平台所获得的实验结果和数据的分析讨论,论证了所提出方法的有效性和实用性.  相似文献   

13.
《Advanced Robotics》2013,27(11):1577-1593
In this paper, we report a robust and low-cost navigation algorithm for an unknown environment based on integration of a grid-based map building algorithm with behavior learning. The study focuses on mobile robots that utilize ultrasonic sensors as their prime interface with the outside world. The proposed algorithm takes into account environmental information to augment the readings from the low angular accuracy sonar measurements for behavior learning. The environmental information is obtained by an online grid-based map learning design that is concurrently operating with the behavior learning algorithm. The proposed algorithm is implemented and tested on an in-house-built mobile robot, and its performance is verified through online navigation in an indoor environment.  相似文献   

14.
Detection of landmarks is essential in mobile robotics for navigation tasks like building topological maps or robot localization. Doors are one of the most common landmarks since they show the topological structure of indoor environments. In this paper, the novel paradigm of fuzzy temporal rules is used for detecting doors from the information of ultrasound sensors. This paradigm can be used both to model the necessary knowledge for detection and to consider the temporal variation of several sensor signals. Experimental results using a Nomad 200 mobile robot in a real environment produce 91% of doors were correctly detected, which show the reliability and robustness of the system.  相似文献   

15.
未知环境下地图的建立,是移动机器人导航技术的关键。研究了室内环境地图的创建方法,探讨了室内环境特征直线提取方法,详细论述了地图创建面临的问题与解决方法。采用SICK公司生产的LMS100激光传感器获取环境深度信息,通过室内环境直线特征提取和局部到全局匹配的方法,获得室内环境地图信息,解决了里程计给机器人带来不确定误差。最后在机器人平台上进行实验,得到了良好的效果。实验表明,该方法具有实现容易、精确高、复杂度低等特点。  相似文献   

16.
We have developed a technology for a robot that uses an indoor navigation system based on visual methods to provide the required autonomy. For robots to run autonomously, it is extremely important that they are able to recognize the surrounding environment and their current location. Because it was not necessary to use plural external world sensors, we built a navigation system in our test environment that reduced the burden of information processing mainly by using sight information from a monocular camera. In addition, we used only natural landmarks such as walls, because we assumed that the environment was a human one. In this article we discuss and explain two modules: a self-position recognition system and an obstacle recognition system. In both systems, the recognition is based on image processing of the sight information provided by the robot’s camera. In addition, in order to provide autonomy for the robot, we use an encoder and information from a two-dimensional space map given beforehand. Here, we explain the navigation system that integrates these two modules. We applied this system to a robot in an indoor environment and evaluated its performance, and in a discussion of our experimental results we consider the resulting problems.  相似文献   

17.
Realizing steady and reliable navigation is a prerequisite for a mobile robot, but this facility is often weakened by an unavoidable slip or some irreparable drift errors of sensors in long-distance navigation. Although perceptual landmarks were solutions to such problems, it is impossible not to miss landmarks occasionally at some specific spots when the robot moves at different speeds, especially at higher speeds. If the landmarks are put at random intervals, or if the illumination conditions are not good, the landmarks will be easier to miss. In order to detect and extract artificial landmarks robustly under multiple illumination conditions, some low-level but robust image processing techniques were implemented. The moving speed and self-location were controlled by the visual servo control method. In cases where a robot suddenly misses some specific landmarks when it is moving, it will find them again in a short time based on its intelligence and the inertia of the previous search motion. These methods were verified by the reliable vision-based indoor navigation of an A-life mobile robot.This work was presented in part at the 8th International Symposium on Artificial Life and Robotics, Oita, Japan, January 24–26, 2003  相似文献   

18.
This paper concerns the exploration of a natural environment by a mobile robot equipped with both a video color camera and a stereo-vision system. We focus on the interest of such a multi-sensory system to deal with the navigation of a robot in an a priori unknown environment, including (1) the incremental construction of a landmark-based model, and the use of these landmarks for (2) the 3-D localization of the mobile robot and for (3) a sensor-based navigation mode.For robot localization, a slow process and a fast one are simultaneously executed during the robot motions. In the modeling process (currently 0.1 Hz), the global landmark-based model is incrementally built and the robot situation can be estimated from discriminant landmarks selected amongst the detected objects in the range data. In the tracking process (currently 4 Hz), selected landmarks are tracked in the visual data; the tracking results are used to simplify the matching between landmarks in the modeling process.Finally, a sensor-based visual navigation mode, based on the same landmark selection and tracking, is also presented; in order to navigate during a long robot motion, different landmarks (targets) can be selected as a sequence of sub-goals that the robot must successively reach.  相似文献   

19.
Learning to select distinctive landmarks for mobile robot navigation   总被引:1,自引:0,他引:1  
In landmark-based navigation systems for mobile robots, sensory perceptions (e.g., laser or sonar scans) are used to identify the robot’s current location or to construct internal representations, maps, of the robot’s environment. Being based on an external frame of reference (which is not subject to incorrigible drift errors such as those occurring in odometry-based systems), landmark-based robot navigation systems are now widely used in mobile robot applications.The problem that has attracted most attention to date in landmark-based navigation research is the question of how to deal with perceptual aliasing, i.e., perceptual ambiguities. In contrast, what constitutes a good landmark, or how to select landmarks for mapping, is still an open research topic. The usual method of landmark selection is to map perceptions at regular intervals, which has the drawback of being inefficient and possibly missing ‘good’ landmarks that lie between sampling points.In this paper, we present an automatic landmark selection algorithm that allows a mobile robot to select conspicuous landmarks from a continuous stream of sensory perceptions, without any pre-installed knowledge or human intervention during the selection process. This algorithm can be used to make mapping mechanisms more efficient and reliable. Experimental results obtained with two different mobile robots in a range of environments are presented and analysed.  相似文献   

20.
A novel topological map representation as well as an online map construction approach is presented in this paper. By virtue of the topological map whose nodes are represented with the free beams of the laser range finder together with the visual scale-invariant features, the mobile robot can autonomously navigate in unknown, large-scale and indoor environments. Different from the traditional navigation methods that rely on precise global localization, the robot locates itself qualitatively by location recognition rather than calculating its global pose in the world reference frame. By combining the reactive navigational method, Beam Curvature Method (BCM), with the topological map, a smooth, real-time navigation without precise localization can be realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号