共查询到20条相似文献,搜索用时 46 毫秒
1.
针对支持向量机参数优化问题,为了提高网络入侵检测率,提出一种变异蚁群算法优化支持向量机的网络入侵检测模型(MACO-SVM)。首先采用蚁群搜索路径节点代表支持向量机参数,并将网络入侵检测率为目标函数,然后通过蚁群算法的全局寻优能力和反馈机制寻找最优参数,并对蚂蚁进行高斯变异,克服蚁群陷入局部极值,最后将最优路径上的节点连接起来得到 SVM的最优参数,建立最优网络入侵检测模型。采用KDD99数据集对模型进行仿真实验,仿真结果表明,MACO-SVM的网络入侵检测速度要快于其它网络入侵检测模型,而且提高了网络入侵检测率。 相似文献
2.
肖国荣 《计算机工程与应用》2014,(3):75-78,107
为了提高网络入侵检测的正确率,提出一种改进蚁群优化算法(ACO)和支持向量机(SVM)相融合的网络入侵检测方法(ACO-SVM)。将SVM模型参数作为蚂蚁的位置向量,采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找到SVM最优参数,采用最优参数建立网络入侵检测模型。利用KDDCUP99数据集对ACO-SVM性能进行测试,结果表明,ACO-SVM提高了网络入侵检测正确率,降低了误报率,可以为网络安全提供有效保证。 相似文献
3.
4.
刘明珍 《计算机工程与应用》2012,48(35):71-74,105
为了提高网络入侵的检测正确率;针对网络入侵检测中特征选择问题;将二值粒子群优化算法(BPSO)用于网络入侵特征选择;结合支持向量机(SVM)提出了一种基于BPSO-SVM的网络入侵检测算法。该算法将网络入侵检测转化为多分类问题;采用wrapper特征选择模型;以SVM为分类器;通过样本训练分类器;根据分类结果;利用BPSO算法在特征空间中进行全局搜索;选择最优特征集进行分类。实验结果表明;BPSO-SVM有效降低了特征维数;显著提高了网络入侵的检测正确率;还大大缩短了检测时间。 相似文献
5.
基于模糊支持向量机的网络入侵检测研究 总被引:3,自引:0,他引:3
模糊支持向量机理论属于统计学习理论,是支持向量机理论的推广,使支持向量机更好地运用到实际工作中。我们将其运用到网络入侵检测中,实验证明是可行的、高效的,有其特点和优势的。 相似文献
6.
网络入侵检测一直是网络安全领域中的研究热点,针对分类器参数优化难题,为了提高网络入侵检测准确性,提出一种改进粒子群算法和支持向量机相融合的网络入侵检测模型(IPSO-SVM).首先将网络入侵检测率作为目标函数,支持向量机参数作为约束条件建立数学模型,然后采用改进粒子群算法找到支持向量机参数,最后采用支持向量机作为分类器建立入侵检测模型,并在Matlab 2012平台上采用KDD 999数据进行验证性实验.结果表明,IPSO-SVM解决了分类器参数优化难题,获得更优的网络入侵分类器,提高网络入侵检测率,虚警率和漏报率大幅度下降. 相似文献
7.
入侵检测系统已经成为网络安全技术的重要组成部分,然而传统的异常入侵检测技术需要通过对大量训练样本的学习,才能达到较高的检测精度,而大量训练样本集的获取在现实网络环境中是比较困难的。文章研究在网络入侵检测中,采用基于支持向量机(SVM)的主动学习算法,解决训练样本获取代价过大带来的问题。文中通过基于SVM的主动学习算法与传统的被动学习算法的对比实验,显示出主动学习算法与传统的学习算法相比,能有效地减少学习样本,极大地提高入侵检测系统的分类性能。 相似文献
8.
汪世义 《计算机技术与发展》2009,19(7)
入侵检测系统是任何一个完整的网络安全系统中必不可缺的部分.日益严峻的安全问题对于检测方法提出更高的要求.传统的入侵检测方法存在误报漏报及实时性差等缺点,将机器学习的技术引入到入侵监测系统之中以有效地提高系统性能具有十分重要的现实意义.支持向量机(SVM)是一种建立在统计学习理论(SLT)基础之上的机器学习方法,被成功地应用到入侵检测领域中.讨论了支持向量机优化算法及其在入侵检测中的应用.实验表明,基于优化支持向量机检测入侵的方法能较大地提高入侵检测系统的性能. 相似文献
9.
入侵检测系统(IDs)作为一种新兴的安全技术得到了广泛的应用。提出了一种基于多级支持向量机的网络入侵检测模型。用支持向量机(SVM)精确的二类分类功能,建立多级分类器对网络入侵行为分别检测出拒绝服务攻击、预攻击探测、未授权的尝试访问及其他可疑活动,入侵检测实验的结果表明了该方法不仅检测准确性高,而且有较快的训练与检测速度,同时表明了该方法的有效性。 相似文献
10.
11.
网络异常检测技术是入侵检测系统中不可或缺的部分。然而目前的入侵检测系统普遍存在检测率不高,误报率过高等问题,从而难以在实际的企业中大规模采用。针对之前的检测技术检测效果不佳的问题,提出基于SVM回归和改进D-S证据理论的入侵检测方法。该方法是将支持向量机回归的分类融合应用到网络异常行为分析中,在SVM参数选择时采用交叉验证和深度优先搜索算法进行优化选择,并通过融合证据理论,建立网络异常检测模型。通过仿真实验表明,该模型能够有效地提高入侵检测性能,缩短检测时间。 相似文献
12.
由于传统嵌入式网络系统入侵检测方法难以获得较高的检测精度,提出基于遗传算法优化的支持向量机(GA-SVM)的网络入侵检测技术.支持向量机分类器能够较好地解决少样本、高维、非线性分类问题.然而,支持向量机训练参数的选择对其分类精度有着很大影响,遗传算法能够同时优化支持向量机的训练参数,采用遗传算法进行支持向量机的训练参数同步优化.实验结果表明,这种遗传算法优化的支持向量机分类入侵检测模型有着很高的检测精度. 相似文献
13.
嵇可可 《计算机应用与软件》2014,(10)
针对最小二乘支持向量机参数优化问题,提出一种变异粒子群算法优化最小二乘支持向量的网络流量预测模型(MPSOLSSVM)。首先对网络流量序列进行相空间重构,构建最小二乘支持向量的学习样本;然后采用变异粒子群算法选择最小二乘支持向量机参数,从而建立最优的网络流量预测模型,最后与其他模型进行对比实验。对比结果表明,相对于对比模型,MPSO-LSSVM提高了网络流量的预测精度,预测结果可以为网络管理员提供有价值参考信息。 相似文献
14.
随着网络入侵行为变得越来越普遍和复杂,传统的单一入侵检测系统已不能满足网络安全的发展需求.针对当前形势,为了提高计算机及网络系统的防御能力,提出了一种基于多主体的分布式网络入侵检测模型,研究了基于多主体的分布式网络入侵检测系统.在对入侵检测系统的描述中,重点介绍了入侵检测系统功能、入侵检测系统框架、入侵检测系统工作流程和系统实现的关键技术.为了验证系统的有效性,对入侵检测系统进行了大量的测试.测试结果表明,入侵检测系统扫描网络花费时间不多,扫描结果准确率很高. 相似文献
15.
红斑鳞状皮肤病的诊断是皮肤病科的一个难题,针对这一问题,提出一种基于混合粒子群的支持向量机(SVM)模型HAPSO-SVM来提高红斑鳞状皮肤病的诊断精度。模型考虑了特征选择机制和参数优化两者对SVM模型起着同等重要的作用,使用自适应的混合粒子群算法(HAPSO)同步实现特征选择机制和SVM的参数寻优,同时设计的线性加权多目标函数综合考虑了分类准确率和支持向量个数,从而提高了算法的准确率和效率。结果表明,提出的模型不仅获得了较少的支持向量个数,找出了红斑鳞状皮肤病紧密相关的特征,并且得到了很高的分类准确率,是一种有效的红斑鳞状皮肤病诊断模型。 相似文献
16.
近几年来千兆以太网的出现,对传统入侵检测的监测速度提出了新的考验.通过对传统的基于网络的入侵检测的分析,提出了一种基于多层次特征匹配的网络入侵检测模式,有效地提高了入侵检测的速度,并且易于对不同级别的入侵提出不同的告警. 相似文献
17.
针对目前抑郁症的诊断方式单一、诊断率低等问题,提出一种基于词向量的多维度正则化SVM社交网络抑郁倾向检测方法.通过人工标注获得训练数据,并请心理学硕士对数据进行验证,确保数据的可用性.在预处理阶段,统计得到常用的抑郁词,使用腾讯词向量进行文本向量化及用户向量化,在构建向量的过程中加入TF-IDF和抑郁词权重因子;在训练... 相似文献
18.
针对网络入侵检测中的高维数据处理问题,提出基于半监督降维技术和BP神经网络的入侵检测方法,该方法主要有两个优点:实时性更高;训练样本标记工作量更小。对半监督降维技术背后的数学原理进行解释,并论述其在网络入侵检测中应用的适用性。对比实验表明:在少量标记样本和大量未标记样本的支持下,半监督降维技术能够在降低维数的同时保持入侵检测性能,从而大幅降低入侵检测的训练和检测时间。 相似文献
19.
为了提高网络入侵检测率,提出一种反向学习粒子群算法和多层次分类器相融合的网络入侵检测模型。首先将反向学习粒子群算法优化最小二乘支持向量机,以提高分类性能;然后利用由粗到精策略构造多层的网络入侵分类器降低计算时间杂度复;最后采用KDD 99数据集进行仿真测试。仿真结果表明,相对于其他检测模型,该模型不仅提高了网络入侵检测率,降低了入侵检测误报率,同时加快了入侵检测速度,为网络安全提供了有效保证。 相似文献
20.
基于免疫原理的多代理网络入侵检测系统的设计 总被引:3,自引:0,他引:3
入侵检测技术对于网络安全来说有重要的意义 ,本文简单介绍了人体免疫系统的工作原理 ,并在此基础上描述了一个基于免疫原理的多代理网络入侵检测系统的设计 相似文献